Digital core: neural network recognition of textual geological and geophysical information
- Authors: Katanov Y.E.1, Aristov A.I.1, Yagafarov A.K.1, Novruzov O.D.1
-
Affiliations:
- Industrial University of Tyumen
- Issue: No 3 (2023)
- Pages: 35-54
- Section: GEOLOGY, PROSPECTING AND EXPLORATION OF OIL AND GAS FIELDS
- URL: https://journal-vniispk.ru/0445-0108/article/view/357086
- DOI: https://doi.org/10.31660/0445-0108-2023-2-35-54
- ID: 357086
Cite item
Full Text
Abstract
About the authors
Yu. E. Katanov
Industrial University of Tyumen
Email: katanov-juri@rambler.ru
ORCID iD: 0000-0001-5983-4040
A. I. Aristov
Industrial University of Tyumen
A. K. Yagafarov
Industrial University of Tyumen
O. D. Novruzov
Industrial University of Tyumen
References
Катанов, Ю. Е. Исследование влияния капиллярных явлений при фильтрации двухфазных несмешивающихся жидкостей в пористых средах / Ю. Е. Катанов, А. К. Ягафаров, И. И. Клещенко. – doi: 10.31660/0445-0108-2020-1-19-29. – Текст : непосредственный // Известия высших учебных заведений. Нефть и газ. – 2020. – № 1. – С. 19–29. Katanov, Yu. E. A probabilistic and statistical model of rock deformation / Yu. E. Katanov. – Text : electronic // E3S Web of Conferences. – 2021. – Vol. 266. – URL: https://doi.org/10.1051/e3sconf/202126603011. – Published: June, 04, 2021. Katanov, Yu. E. Geological and mathematical description of the rocks strain during behavior of the producing solid mass in compression (Tension) / Yu. E. Katanov, Yu. V. Vaganov, M. V. Listak. – doi: 10.33271/mining15.04.091. – Direct text // Journal of Mines, Metals & Fuels. – 2020. – Vol. 68, Issue 9. – P. 285–293. Ломов, П. А. Аугментация обучающего набора при обучении нейросетевой языковой модели для наполнения онтологии / П. А Ломов, М. Л. Малоземова.– doi: 10.37614/2307-5252.2021.5.12.002 – Текст : непосредственный // Труды Кольского научного центра РАН. Информационные технологии. – 2021. – Вып. 12. – Т. 12, № 5. – С. 22–34. Сайгин, А. А. Векторизация нормативно-справочной информации с помощью модели нейронной сети BERT / А. А. Сайгин, Н. П. Плотникова. – Текст : электронный // Информационные технологии и математическое моделирование в управлении сложными системами : электронный журнал. – 2021. – № 2. – С. 52–59. – URL: https://doi.org/10.26731/2658-3704.2021.2(10).52-59. Соломин, А. А. Современные подходы к мультиклассовой классификации интентов на основе предобученных трансформеров / А. А. Соломин, Ю. А. Иванова. – doi: 10.17586/2226-1494-2020-20-4-532-538. – Текст : непосредственный // Научно-технический вестник информационных технологий, механики и оптики. – 2020. – Т. 20, № 4. – С. 532–538. Text classification models for the automatic detection of nonmedical prescription medication use from social media / M. A. Al-Garadi, Y. C. Yang, H. Cai. – Text : elctronic // BMC medical informatics and Decision Making. – 2021. – Vol. 21. – URL: https://doi.org/10.1186/s12911-021-01394-0. Published: January, 26, 2021. Comparison of Pre-Trained Language Models for Multi-Class Text Classification in the Financial Domain / Y. Arslan, K. Allix, L. Veiber. – doi: 10.1145/3442442.3451375. – Direct text // Companion Proceedings of the Web Conference. – 2021. – P. 260–268. Çelikten, A. Turkish Medical Text Classification Using BERT / A. Çelikten, H. Bulut. – Text : electronic // 2021 29th Signal Processing and Communications Applications Conference (SIU). IEEE. – 2021. – URL: https://doi.org/10.1109/SIU53274.2021.9477847. Das, S. Identification of Cognitive Learning Complexity of Assessment Questions Using Multi-class Text Classification / S. Das, S. K. D. Mandal, A. Basu. – doi: 10.30935/cedtech/8341. – Text : electronic // Contemporary Educational Technology. – 2020. – Vol. 12, Issue 2. – URL: https://doi.org/10.30935/cedtech/8341. Auto-labelling entities in low-resource text : a geological case study / M. Enkhsaikhan, W. Liu, E. J. Holden, P. Duurin. – doi: 10.1007/s10115-020-01532-6. – Direct text // Knowledge and Information Systems. – 2021. – Vol. 63. – P. 695–715. Gao, X. Named entity recognition in material field based on Bert-BILSTMAttention-CRF / X. Gao, Q. Li. – doi: 10.1109/TOCS53301.2021.9688665. – Direct text // 2021 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). – 2021. – P. 955–958. Glazkova, A. A Comparative study of Feature Types for Age-Based Text Classification / A. Glazkova, Yu. Egorov, M. Glazkov. – doi: 10.1007/978-3-030-72610-2_9. – Direct text // International Conference on Analysis of Images, Social Networks and Texts. – 2020. – P. 120–134. Evaluating Transformer-Based Multilingual Text Classification / S. Groenwold, S. Honnavalli, L. Ou. – Text : electronic // arXiv:2004.13939v2. – 2020. – URL: https://doi.org/10.48550/arXiv.2004.13939. Research on a geological entity relation extraction model for gold mine based on BERT / X. Huang, Y. Zhu, L. Fu. – doi: 10.12090/j.issn.1006-6616.2021.27.03.035. – Direct text // Journal of Geomechanics. – 2021. – Vol. 27, Issue 3. – P. 391–399. BERT for Russian news clustering / A. S. Kabaev, S. V. Khaustov, N. E. Gorlova, A. V. Kalmykov. – Text : electronic // Computational Linguistics and Intellectual Technologies. – 2021. – URL: https://doi.org/10.28995/2075-7182-2021-20-385-390. Chinese named entity recognition in the geoscience domain based on BERT / X. Lv, Z. Xie, D. Xu. – Text : electronic // Earth and Space Science. – 2022. – Vol. 9, Issue 3. – URL: https://doi.org/10.1029/2021EA002166. – Published: February, 14, 2022. What is this article about? Generative summarization with the BERT model in the geosciences domain / K. Ma, M. Tian, Y. Tan. – doi: 10.1007/s12145-021-00695-2. – Direct text // Earth Science Informatics. – 2022. – Vol. 15. – P. 21–36. Piao, G. Scholarly Text Classification with Sentence BERT and Entity Embeddings / G. Piao. – doi: 10.1007/978-3-030-75015-2_8. – Direct text // PAKDD 2021 : Trends and Applications in Knowledge Discovery and Data Mining. – 2021. – P. 79–87. Prabhu, S. Multi-class Text Classification using BERT-based Active Learning / S. Prabhu, M. Mohamed, H. Misra. – Text : electronic // arXiv:2104.14289v2. – 2021. – URL: https://doi.org/10.48550/arXiv.2104.14289. A Fine-Tuned BERT-Based Transfer Learning Approach for Text Classification / R. Qasim, W. H. Bangyal, M. A. Alqarni, A. Ali Almazroi. – Text : electronic // Journal of Healthcare Engineering. – 2022. – URL: https://doi.org/10.1155/2022/3498123. – Published: January, 07, 2022. Text classification on software requirements specifications using transformer models / D. Kici, A. Bozanta, M. Cevik.. – doi: 10.5555/3507788.3507811. – Direct text // Proceedings of the 31st Annual International Conference on Computer Science and Software Engineering. – 2021. – P. 163–172. Lun, C. H. Extracting Knowledge with NLP from Massive Geological Documents / C. H. Lun, T. Hewitt, S. Hou // 82nd EAGE Annual Conference & Exhibition. European Association of Geoscientists & Engineers. – 2021. – URL: https://doi.org/10.3997/2214-4609.202112807. Smetanin, S. I. Toxic comments detection in Russian / S. I. Smetanin. – doi: 10.28995/2075-7182-2020-19-1149-1159. – Direct text // Computational Linguistics and Intellectual Technologies. – 2020. – P. 1149–1159.
Supplementary files
