Катализаторы MNOX/ZRO2–CEO2 в реакциях окисления СО и пропана: влияние содержания марганца
- Авторы: Афонасенко Т.Н.1, Юрпалова Д.В.1, Юрпалов В.Л.2, Коновалова В.П.1, Рогов В.А.1, Айдаков Е.Е.1,3, Серкова А.Н.1, Булавченко О.А.1
-
Учреждения:
- ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН
- Центр новых химических технологий ФГБУН ФИЦ Институт катализа ИК СО РАН (Омский филиал)
- Центр коллективного пользования “СКИФ” ФГБУН ФИЦ Институт катализа им. Г.К. Борескова
- Выпуск: Том 66, № 1 (2025)
- Страницы: 3-18
- Раздел: ОБЗОР
- URL: https://journal-vniispk.ru/0453-8811/article/view/305129
- DOI: https://doi.org/10.31857/S0453881125010015
- EDN: https://elibrary.ru/eipaec
- ID: 305129
Цитировать
Аннотация
Изучено влияние содержания нанесенного марганца на структурные свойства и активность в реакциях окисления СО и пропана для катализаторов MnОx/Zr0.4Ce0.6, приготовленных методом пропитки. Установлено, что по мере повышения содержания марганца до 3.6 мас.% (мольное отношение Mn/(Zr + Ce) ≤ 0.1) каталитическая активность MnОx/Zr0.4Ce0.6 в реакциях окисления растет, при нанесении бόльшего количества марганца — меняется слабо. Согласно данным рентгенофазового анализа (РФА), термопрограммированного восстановления водородом (ТПВ-Н2), электронного парамагнитного резонанса (ЭПР) и рентгеновской фотоэлектронной спектроскопии (РФЭС) для образцов состава Mn/(Zr + Ce) ≤ 0.1 увеличение количества нанесенного марганца сопровождается изменением параметра решеток фаз носителя, возрастанием количества слабосвязанного кислорода, а также количества кислородных вакансий в структуре оксида церия, ростом поверхностной концентрации марганца. Эти изменения обусловлены вхождением марганца в структуру носителя и возможным образованием высокодисперсных частиц MnОx на его поверхности, что объясняет наблюдаемое повышение каталитической активности. Стабилизация каталитической активности при дальнейшем увеличении количества нанесенного марганца коррелирует со слабым изменением количества слабосвязанного кислорода и кислородных вакансий носителя в связи с появлением и последующим ростом содержания менее каталитически активной фазы Mn2O3.
Ключевые слова
Об авторах
Т. Н. Афонасенко
ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН
Email: atnik@ihcp.ru
просп. Акад. Лаврентьева, 5, Новосибирск, 630090 Россия
Д. В. Юрпалова
ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН
Email: atnik@ihcp.ru
просп. Акад. Лаврентьева, 5, Новосибирск, 630090 Россия
В. Л. Юрпалов
Центр новых химических технологий ФГБУН ФИЦ Институт катализа ИК СО РАН (Омский филиал)
Email: atnik@ihcp.ru
ул. Нефтезаводская, 54, Oмск, 644040 Россия
В. П. Коновалова
ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН
Email: atnik@ihcp.ru
просп. Акад. Лаврентьева, 5, Новосибирск, 630090 Россия
В. А. Рогов
ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН
Email: atnik@ihcp.ru
просп. Акад. Лаврентьева, 5, Новосибирск, 630090 Россия
Е. Е. Айдаков
ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН; Центр коллективного пользования “СКИФ” ФГБУН ФИЦ Институт катализа им. Г.К. Борескова
Email: atnik@ihcp.ru
просп. Акад. Лаврентьева, 5, Новосибирск, 630090 Россия; Никольский просп., 1, Наукоград Кольцово, 630559 Россия
А. Н. Серкова
ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН
Email: atnik@ihcp.ru
просп. Акад. Лаврентьева, 5, Новосибирск, 630090 Россия
О. А. Булавченко
ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН
Автор, ответственный за переписку.
Email: obulavchenko@catalysis.ru
просп. Акад. Лаврентьева, 5, Новосибирск, 630090 Россия
Список литературы
- Everaert K., Baeyens J. // J. Hazard. Mater. 2004. V. 109. P. 113. https://doi.org/10.1016/j.jhazmat.2004.03.019
- Li W.B., Wang J.X., Gong H. // Catal. Today. 2010. V. 148. P. 81. https://doi.org/10.1016/j.cattod.2009.03.007
- Yue B., Zhou R., Wang Y., Zheng X. // Appl. Surf. Sci. 2006. V. 252. P. 5820. https://doi.org/10.1016/j.apsusc.2005.07.043
- Snytnikov P.V., Sobyanin V.A., Belyaev V.D., Tsyrulnikov P.G., Shitova N.B., Shlyapin D.A. // Appl. Catal. A: Gen. 2003. V. 239. P. 149. https://doi.org/10.1016/S0926-860X(02)00382-4
- Liu Z., Zhou R., Zheng X. // J. Mol. Catal. A: Chem. 2007. V. 267. Р. 137. https://doi.org/10.1016/j.molcata.2006.11.036
- Tang W., Wu X., Li D., Wang Z., Liu G., Liu H., Chen Y. // J. Mater. Chem. A. 2014. V. 2. P. 2544. https://doi.org/10.1039/c3ta13847j
- Pozan G.S. // J. Hazard. Mater. 2012. V. 221—222. P. 124. https://doi.org/10.1016/j.jhazmat.2012.04.022
- Shen B., Wang Y., Wang F., Liu T. // Chem. Eng. J. 2014. V. 236. P. 171. https://doi.org/10.1016/ j.cej.2013.09.085
- Li S., Zheng Z., Zhao Z., Wang Y., Yao Y., Liu Y., Zhang J., Zhang Z. // Molecules. 2022. V. 27. Art. 4863. https://doi.org/10.3390/molecules27154863
- Frey K., Iablokov V., Sáfrán G., Osán J., Sajó I., Szukiewicz R., Chenakin S., Kruse N. // J. Catal. 2012. V. 287. P. 30. https://doi.org/10.1016/j.jcat.2011.11.014
- Zhong L., Fang Q., Li X., Li Q., Zhang C., Chen G. // Appl. Catal. A: Gen. 2019. V. 579. P. 151. https://doi.org/10.1016/j.apcata.2019.04.013
- Mobini S., Meshkani F., Rezaei M. // Chem. Eng. Sci. 2019. V. 197. P. 37. https://doi.org/10.1016/ j.ces.2018.12.006
- Zhao G., Li J., Zhu W., Ma X., Guo Y., Liu Z., Yang Y. // New J. Chem. 2016. V. 40. P. 10108. https://doi.org/10.1039/c6nj02272c
- Long G., Chen M., Li Y., Ding J., Sun R., Zhou Y., Huang X., Han G., Zhao W. // Chem. Eng. J. 2019. V. 360. P. 964. https://doi.org/10.1016/j.cej. 2018.07.091
- Liu X., Lu J., Qian K., Huang W., Luo M. // J. Rare Earths. 2009. V. 27. P. 418. https://doi.org/10.1016/S1002-0721(08)60263-X
- Lu H.F., Zhou Y., Han W.F., Huang H.F., Chen Y.F. // Appl. Catal. A: Gen. 2013. V. 464—465. P. 101. https://doi.org/10.1016/j.apcata.2013.05.036
- Nelson A.E., Schulz K.H. // Appl. Surf. Sci. 2003. V. 210. P. 206. https://doi.org/10.1016/S0169-4332(03)00157-0
- Terribile D., Tovarelli A., de Leitenburg C., Primavera A., Dolcetti G. // Catal. Today. 1999. V. 47. P. 133.
- Afonasenko T.N., Glyzdova D.V., Yurpalov V.L., Konovalova V.P., Rogov V.A., Gerasimov E.Y. // Materials. 2022. V. 15. P. 7553. https://doi.org/10.3390/ma15217553
- Sun W., Li X., Mu J., Fan S., Yin Z., Wang X., Qin M., Tadé M., Liu S. // J. Colloid Interf. Sci. 2018. V. 531. P. 91. https://doi.org/10.1016/j.jcis.2018.07.050
- Azalim S., Franco M., Brahmi R., Giraudon J.M., Lamonier J.F. // J. Hazard. Mater. 2011. V. 188. P. 422. https://doi.org/10.1016/j.jhazmat.2011.01.135
- Rao T., Shen M., Jia L., Hao J., Wang J. // Catal. Commun. 2007. V. 8. P. 1743. https://doi.org/10.1016/j.catcom.2007.01.036
- Hou Z., Feng J., Lin T., Zhang H., Zhou X., Chen Y. // Appl. Surf. Sci. 2018. V. 434. P. 82. https://doi.org/ 10.1016/j.apsusc.2017.09.048
- Shen B., Zhang X., Ma H., Yao Y., Liu T. // J. Environ. Sci. 2013. V. 25. P. 791. https://doi.org/10.1016/S1001-0742(12)60109-0
- Tang X., Li Y., Huang X., Xu Y., Zhu H., Wang J., Shen W. // Appl. Catal. B: Environ. 2006. V. 62. P. 265. https://doi.org/10.1016/j.apcatb.2005.08.004
- Scofield J.H. // J. Electron Spectrosc. Relat. Phenom. 1976. V. 8. № 2. P. 129.
- Shirley D.A. // Phys. Rev. B. 1972. V. 5. P. 4709.
- Fairley N. CasaXPS. www.casaxps.com
- Цырульников П.Г., Сальников В.С., Дроздов В.А., Стукен С.А., Бубнов А.В., Григоров Е.И., Калинкин А.В., Зайковский В.И. // Кинетика и катализ. 1991. Т. 32. № 2. С. 439.
- Kaplin I.Y., Lokteva E.S., Golubina E.V., Shishova V.V., Maslakov K.I., Fionov A.V., Isaikina O.Y., Lunin V.V. // Appl. Surf. Sci. 2019. V. 485. P. 432. https://doi.org/10.1016/j.apsusc.2019.04.206
- Venkataswamy P., Rao K.N., Jampaiah D., Reddy B.M. // Appl. Catal. B: Environ. 2015. V. 162. P. 122. https://doi.org/10.1016/j.apcatb.2014.06.038
- Huang X., Li L., Liu R., Li H., Lan L., Zhou W. // Catalysts. 2021. V. 11. № 9. Art. 1037. https://doi.org/10.3390/catal11091037
- Афонасенко Т.Н., Булавченко О.А., Гуляева Т.И., Цыбуля С.В., Цырульников П.Г. // Кинетика и катализ. 2018. Т. 59. № 1. С. 127. (Afonasenko T.N., Bulavchenko O.A., Gulyaeva T.I., Tsybulya S.V., Tsyrul’ni- kov P.G. // Kinet. Catal. 2018. V. 59. P. 104. https://doi.org/10.1134/S0023158418010019)
- Yang M., Shen G., Wang Q., Deng K., Liu M., Chen Y., Gong Y., Wang Z. // Molecules. 2021. V. 26. Art. 6363. https:// doi.org/10.3390/molecules26216363
- Martínez-Arias A., Fernández-García M., Belver C., Conesa J.C., Soria J. // Catal. Lett. 2000. V. 65. P. 197. https://doi.org/10.1023/A:1019089910238
- Silva-Calpa L. del R., Zonetti P.C., Rodrigues C.P., Alves O.C., Appel L.G., de Avillez R.R. // J. Mol. Catal. A: Chem. 2016. V. 425. P. 166. https://doi.org/10.1016/j.molcata.2016.10.008
- Anpo M., Costentin G., Giamello E., Lauron-Pernot H., Sojka Z. // J. Catal. 2021. V. 393. P. 259. https://doi.org/10.1016/j.jcat.2020.10.011
- Che M., Dyrek K., Louis C. // J. Phys. Chem. 1985. V. 89. P. 4526. https://doi.org/10.1021/j100267a022
- Borchert H., Frolova Y.V., Kaichev V.V., Prosvirin I.P., Alikina G.M., Lukashevich A.I., Zaikov-skii V.I., Moroz E.M., Trukhan S.N., Ivanov V.P., Paukshtis E.A., Bukhtiyarov V.I., Sadykov V.A. // J. Phys. Chem. B. 2005. V. 109. P. 5728. https://doi.org/10.1021/jp045828c
- Christou S.Y., Álvarez-Galván M.C., Fierro J.L.G., Efstathiou A.M. // Appl. Catal. B: Environ. 2011. V. 106. P. 103. https://doi.org/10.1016/j.apcatb.2011.05.013
- Han Y.F., Chen F., Zhong Z., Ramesh K., Chen L., Widjaja E. // J. Phys. Chem. B. 2006. V. 110. P. 24450. https://doi.org/10.1021/jp064941v
- Castro V.D., Polzonetti G. // J. Electron Spectrosc. Relat. Phenom. 1989. V. 48. P. 117.
- Feng X., Cox D.F. // Surf. Sci. 2016. V. 645. P. 23. https://doi.org/10.1016/j.susc.2015.10.041
- Gómez L.E., Miró E.E., Boix A.V. // Int. J. Hydrogen Energy. 2013. V. 38. P. 5645. https://doi.org/10.1016/j.ijhydene.2013.03.004
- Bulavchenko O.A., Afonasenko T.N., Ivanchikova A.V., Murzin V.Y., Kremneva A.M., Saraev A.A., Kaichev V.V., Tsybulya S.V. // Inorg. Chem. 2021. V. 60. P. 16518. https://doi.org/10.1021/acs.inorgchem.1c02379
Дополнительные файлы
