Протокол, сохраняющий как твердые, так и нежные части объекта: подготовка прорастающей геммулы пресноводной убки к гистологическим исследованиям и электронной микроскопии

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Многие объекты биологии развития обладают гетерогенной структурой: они состоят из частей, предъявляющих разные требования к протоколам пробоподготовки, что существенно осложняет их изучение методами микроскопии. Обязательным этапом работы является адаптация протоколов пробоподготовки к особенностям строения такого организма. Примером подобного объекта является прорастающая геммула пресноводной убки Ephydatia fluviatilis (Linnaeus, 1759), состоящая из массы клеток, покрытых жесткой оболочкой, включающей кремниевые спикулы, и нежного миграционного проната, образованного клетками, выползающими из геммулы и мигрирующими по субстрату. Задачей настоящего исследования был подбор протоколов, позволяющих исследовать миграционное поведение клеток на ранних стадиях развития E. fluviatilis методами гистологии, сканирующей и трансмиссионной электронной микроскопии.

Об авторах

Е. И Андронова

Институт биологии развития имени Н.К. Кольцова РАН

Email: andronova_e.i@mail.ru
ORCID iD: 0009-0001-2358-7997
Москва, Российская Федерация

А. И Богомолов

Институт биологии развития имени Н.К. Кольцова РАН

Email: bogomolov.anton2000@gmail.com
ORCID iD: 0009-0003-6737-9764
Москва, Российская Федерация

А. И Лавров

Беломорская биологическая станция имени Н.А. Перцова, Биологический факультет, МГУ имени М.В. Ломоносова

Email: lavrovai.bio@yandex.ru
ORCID iD: 0000-0002-0788-9039
пос. Приморский, Карельская республика, Российская Федерация

А. М Соколова

Институт биологии развития имени Н.К. Кольцова РАН

Email: agnisokolova@gmail.com
ORCID iD: 0000-0002-2056-1310
Москва, Российская Федерация

Е. Е Воронежская

Институт биологии развития имени Н.К. Кольцова РАН

Email: elena.voronezhskaya@idbras.ru
ORCID iD: 0000-0002-9953-2538
Москва, Российская Федерация

А. В Ересковский

Институт биологии развития имени Н.К. Кольцова РАН; Aix Marseille University, Avignon Universite

Email: aereksovsky@mail.ru
ORCID iD: 0000-0003-1079-7204
Москва, Российская Федерация; Марсель, Франция

Ю. А Краус

Институт биологии развития имени Н.К. Кольцова РАН; Биологический факультет, МГУ имени М.В. Ломоносова

Email: yuliakraus2@mail.ru
ORCID iD: 0000-0003-1916-4200
Москва, Российская Федерация

Список литературы

  1. Mironov A.A., Komissarchik Ya. Yu., Mironov V.A. Methods of electron microscopy in biology and medicine. St. Petersburg: Nauka. 1994. 400 p. (In Russ.)
  2. Berthold G. Untersuchungen über die Histoblastendifferenzierung in der Gemmula von Ephydatia fluviatilis. Zeitschr. wiss. Mikrosk. 1969; 69(4): 227–243.
  3. Calheira L., Lanna E., Pinheiro U. Tropical freshwater sponges develop from gemmules faster than their temperate-region counterparts. Zoomorphology. 2019; 138: 425–36.
  4. Colgren J., Nichols S.A. 2022. MRTF specifies a muscle-like contractile module in Porifera // Nat. Commun. Vol. 13. Art. 4134. https://doi.org/10.1038/s41467-022-31756-9
  5. Ereskovsky A., Melnikov N.P., Lavrov A. Archaeocytes in sponges: simple cells of complicated fate. Biological Reviews. 2025 Apr; 100(2): 790–814.
  6. Funayama N., Nakatsukasa M., Hayashi T., Agata K. Isolation of the choanocyte in the fresh water sponge, Ephydatia fluvitilis and its lineage marker, Ef annexin. Dev Growth Differ. 2005 May; 47(4): 243–53.
  7. Funayama N., Nakatsukasa M., Mohri K., Masuda Y., Agata K. Piwi expression in archeocytes and choanocytes in demosponges: Insights into the stem cell system in demosponges. Evol Dev. 2010; 12(3): 275–87.
  8. Höhr D. Differenzierungsvorgänge in der keimenden Gemmula von Ephydatia fluviatilis. Wilhelm Roux Arch Entwickl Mech Org. 1977; 182: 329–46.
  9. Hopwood D. Theoretical and practical aspects of glutaraldehyde fixation. Histochem J. 1972; 4: 267–303. https://doi.org/10.1007/BF01005005
  10. Karnovsky M.J. A formaldehyde glutaraldehyde fixative of high osmolality for use in electron microscopy. J. cell Biol. 1965 Nov; 27: 1A 49A.
  11. Karnowsky M.J. The ultrastructural basis of capillary permeability. Studies with peroxidase as a trace. Cell Biol. 1967; 36: 213.
  12. Kishimoto K., Sugano-Yasunaga W., Taniguchi A., Agata K., Nonaka S., Funayama N. Skeleton construction upon local regression of the sponge body. Dev Growth Differ. 2019; 61(9): 485–500.
  13. Langenbruch P.F. Zur Entstehung der Gemmulae bei Ephydatia fluviatilis L. (Porifera). Zoomorphology. 1981; 97: 263–84.
  14. Langenbruch P.F. Die Entstehung der Gemmula-Schalen bei Spongilla fragilis Leidy (Porifera). Zoomorphology. 1982; 99: 221–34.
  15. Lavrov A.I., Ereskovsky A.V. Studying Porifera WBR Using the calcerous sponges Leucosolenia. Methods in molecular biology (Clifton, NJ). 2022; 2450: 69–93.
  16. Leys S.P., Grombacher L., Field D., Elliott G.R., Ho V.R., Kahn A.S., et al. A morphological cell atlas of the freshwater sponge Ephydatia muelleri with key insights from targeted single-cell transcriptomes. EvoDevo. 2025; 16(1): 1.
  17. Manconi R., Pronzato R. How to survive and persist in temporary freshwater? Adaptive traits of sponges (Porifera: Spongillida): A review. Hydrobiologia. 2016; 782: 11–22.
  18. Mason I. The Avian Embryo. In: Sharpe PT, Mason I, editors. Molecular Embryology. New York: Humana Press; 2008. Pp. 1–21 (Methods in Molecular Biology; vol. 461).
  19. Mohri K., Nakatsukasa M., Masuda Y., Agata K., Funayama N. Toward understanding the morphogenesis of siliceous spicules in freshwater sponge: Differential mRNA expression of spicule-type-specific silicatein genes in Ephydatia fluviatilis. Dev Dyn. 2008; 237(10): 3024–39.
  20. Musser A.J.M., Schippers K.J., Nickel M., Mizzon G., Achim K., Schieber N.L., et al. Profiling cellular diversity in sponges informs animal cell type and nervous system evolution. Science. 2021; 374(6568): 717–23.
  21. Qin Y., Jiang W., Li A., Gao M., Liu H., Gao Y., Tian X., Gong G. The combination of paraformaldehyde and glutaraldehyde is a potential fixative for mitochondria. Biomolecules. 2021 May 10; 11(5): 711.
  22. Reynolds E.S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963; 17(1): 208–12.
  23. Simpson T.L., Gilbert J.J. Gemmulation, Gemmule Hatching, and Sexual Reproduction in Fresh-Water Sponges I. The Life Cycle of Spongilla lacustris and Tubella pennsylvanica. Trans Am Microsc Soc. 1973; 92(3): 422–33.
  24. Simpson T.L., Vaccaro C.A., Shaafi R.I. The role of intragemmular osmotic pressure in cell Division and hatching of gemmules of the fresh-water sponge Spongilla lacustris (Porifera). Zeitschr. Morphol. Tiere. 1973; Bd. 76: 339–357.
  25. Sokolova A.M., Ereskovsky A.V. How gemmules become sponges: known facts and open questions. Invertebrate Zoology. 2025; 22(3): 383–400. https://doi.org/10.15298/invertzool.22.3.01
  26. Starck J.M. Morphology of the avian yolk sac. J Morphol. 2021; 282(7): 959–72.
  27. Von Dassow G. Some simple methods and tips for embryology [Internet]. 2010. Available from: https://gvondassow.com/Research_Site/Methods_files/Some%20simple%20methods%20and%20tips.pdf
  28. Weakley B.S. A beginner's handbook in biological transmission electron microscopy. Edinburgh: Churchill Livingstone; 1981. 252 p.
  29. Woollacott R.M., Hadfield M.G. Induction of metamorphosis in larvae of a sponge. Invertebr. Biol. 1996; 115 (4): 257–262.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).