IMMUNOGENIC PROPERTIES OF RECOMBINANT MOZAIC PROTEINS BASED ON ANTIGENS NS4A AND NS4B OF HEPATITIS C VIRUS

Cover Page

Cite item

Full Text

Abstract

The aim of the study was to investigate immunogenic properties of mosaic recombinant proteins constructed on the data of hepatitis C virus NS4A and NS4B antigens. Four mosaic recombinant proteins, containing the T and B epitopes of the NS4A and NS4B antigens, were created by genetic engineering methods in the E. coli system. To enhance the immune response they were linked in different variations to the nucleotide sequences of murine interleukin-2 (IL-2), the Neisseria meningiditis lipopeptide, and the T helper epitope of the core protein of hepatitis C virus. The immunogenic properties of these recombinant proteins were analyzed by immunoblotting, ELISA and ELISpot using sera from immunized mice and patients infected with hepatitis C virus. Recombinant proteins specifically reacted with the sera of immunized mice and infected patients in immunoblotting. According to the ELISA data, the predominant formation of antibodies to NS4B was observed when mice were immunized with the recombinant proteins containing both antigens. Analysis of gamma-interferon production by T-lymphocytes upon contact with activated dendritic cells showed in ELISpot that the maximum production of this cytokine was detected when adjuvant components were located at the N- and C-ends of the recombinant protein. The highest level of gamma-interferon production during stimulation with this drug was detected in lymphocytes from the bone marrow and lymph nodes. The recombinant protein containing the T and B epitopes of NS4A and NS4B, murine IL-2 and the lipopeptide Neisseria meningiditis had the greatest immunostimulate effect among the four constructions. This recombinant protein formed nanoparticles of 100-120 nm in size.

About the authors

V. V. Koupriyanov

Federal Research Centre «Fundamentals of Biotechnology»

Author for correspondence.
Email: vkoop@biengi.ac.ru
Russian Federation

L. I. Nikolaeva

D.I. Ivanovsky Institute of Virology, «National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya»

Email: noemail@neicon.ru
Russian Federation

A. A. Zykova

Federal Research Centre «Fundamentals of Biotechnology»

Email: noemail@neicon.ru
Russian Federation

P. I. Makhnovskiy

D.I. Ivanovsky Institute of Virology, «National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya»

Email: noemail@neicon.ru
Russian Federation

R. Y. Kotlyarov

Federal Research Centre «Fundamentals of Biotechnology»

Email: noemail@neicon.ru
Russian Federation

A. V. Vasilyev

D.I. Ivanovsky Institute of Virology, «National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya»

Email: noemail@neicon.ru
Russian Federation

N. V. Ravin

Federal Research Centre «Fundamentals of Biotechnology»

Email: noemail@neicon.ru
Russian Federation

References

  1. http://clinicaltrials.gov/ct2/show/NCTO1436357
  2. Ridge J.P., Di Rosa F., Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature. 1998; 393(6684): 474-8.
  3. Jallow S., Leligdowicz A., Kramer H.B., Onyango С., Cotton М., Wright С., et al. The presence of prolines in the flanking region of an immunodominant HIV-2 gag epitope influences the quality and quantity of the epitope generated. Eur. J. Immunol. 2015; 45(8): 2232-42.
  4. Chang J.C., Seidel C., Ofenloch B., Jue D.L., Fieds H.A., Khudyakov Y.E. Antigenic heterogeneity of the hepatitis C virus NS4 protein as modeled with synthetic peptides. Virology. 1999; 257(1): 177-90.
  5. Bermúdez-Aguirre A.D., Padilla-Noriega I., Zenteno E., Reyes-Leyva J. Identification of amino acid variants in the hepatitis C virus non-structural protein 4A. Tohoku J. Exp. Med. 2009; 218(3): 165-75.
  6. Desombere I., Van Vlierberghe H., Wieland O., Hultgren C., Sallberg M., Quiroga J., et al. Serum levels of anti-NS4a and anti-NS5a predict treatment response of patients with chronic hepatitis C. J. Med. Virol. 2007; 79(6): 701-13.
  7. Николаева Л.И., Макашова В.В., Петрова Е.В., Шипулин Г.А., Самохвалов Е.И., Токмалаев А.К. и др. Снижение содержания антител к вирусу гепатита С при антивирусной терапии. Биомедицинская химия. 2009; 55(2): 201-12
  8. Li X.D., Sun L., Seth R.B., Pineda G., Chen Z.J. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc. Natl. Acad. Sci. USA. 2005; 102(49): 17717-22.
  9. Li K., Foy E., Ferreon J.C., Nakamura M., Ferreon A.C., Ikeda M., et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc. Natl. Acad. Sci. USA. 2005; 102(8): 2992-7.
  10. Nitta S., Sakamoto N., Nakagawa M., Kakinuma S., Mishima K., Kusano-Kitazume A., et al. Hepatitis C virus NS4B protein targets STING and abrogates RIG-I-mediated type I interferon-dependent innate immunity. Hepatology. 2013; 57(1): 46-58.
  11. Einav S., Sklan E.H., Moon H.M., Gehrig E., Liu P., Hao Y., et al. The nucleotide binding motif of hepatitis C virus NS4B can mediate cellular transformation and tumor formation without Ha-ras co-transfection. Hepatology. 2008; 47(3): 827-35.
  12. Duan L., Lei P., Yumei X., Xiaoping X., Futao Z., Li M., et al. Prediction and identification-based prediction of chinese hepatitis C viral-specific cytotoxic T lymphocyte epitopes. J. Med. Virol. 2011; 83(8): 1315-20.
  13. Huang X.J., Lü X., Lei Y.F., Yang J., Yao M., Lan H.Y., et al. Cellular immunogenicity of a multi-epitope peptide vaccine candidate based on hepatitis C virus NS5A, NS4B and core proteins in HHD-2 mice. J. Virol. Meth. 2013; 189(1): 47-52.
  14. Day C.L., Lauer G.M., Robbins G.K., McGovern B., Wurcel A.G., Gandhi R.T., et al. Broad specificity of virus-specific CD4 T-helper-cell responses in resolved hepatitis C virus infection. J. Virol. 2002; 76(24): 12584-95.
  15. Alexander J., Oseroff C., Dahlberg C., Qin M., Ishioka G., Beebe M. A Decaepitope polypeptide primes for multiple CD8+, IFN-gamma and Th lymphocyte responses: evaluation of multiepitope polypeptides as a mode for vaccine delivery. J. Immunol. 2002; 168(12): 6189-98.
  16. Chua B.Y., Eriksson E.M., Brown L.E., Zeng W., Gowans E.J., Torresi J., et al. A self-adjuvanting lipopeptide-based vaccine candidate for the treatment of hepatitis C virus infection. Vaccine. 2008; 26(37): 4866-75.
  17. Langhans B., Braunschweiger I., Schweitzer S., Jung G., Inchauspeâ G., Sauerbruch T., et al. Lipidation of T helper sequences from hepatitis C virus core significantly enhances T-cell activity in vitro. Immunology. 2001; 102(4): 460-5.
  18. Shamriz S., Ofoghi H. Design, structure prediction and molecular dynamics simulation of a fusion construct containing malaria pre-erythrocytic vaccine candidate, PfCelTOS, and human interleukin 2 as adjuvant. BMC Bioinformatics. 2016; 17: 71-86.
  19. Faulkner L., Buchan G., Lockhart E., Slobbe L., Wilson M., Baird M. IL-2 linked to a peptide from influenza hemagglutinin enhances T cell activation by affecting the antigen-presentation function of bone marrow-derived dendritic cells. Int. Immunol. 2001; 13(6): 713-21.
  20. Zhang H.X., Qiu Y.Y., Zhao Y.H., Liu X.T., Liu M., Yu A.-L. Immunogenicity of oral vaccination with Lactococcus lactis derived vaccine candidate antigen (UreB) of Helicobacter pylori fused with the human interleukin 2 as adjuvant. Mol. Cell Probes. 2014; 28(1): 25-30.
  21. Peptide Cleavege. Available at: http://peptibase.cs.biu.ac.il/PepCleave_II/ SYFPEITHI. Available at: http://www.syfpeithi.de MAPPP. Available at: http://www.mpiib-berlin.mpg.de/MAPPP Immune epitope database and analysis resource. Available at: http://www.iedb.org
  22. Arai R., Wriggers W., Nishikawa Y., Nagamune T.I., Fujisawa T. Conformations of variably linked chimeric proteins evaluated by synchrotron X-ray small-angle scattering. Proteins. 2004, 57(4): 829-38.
  23. Chen H.W., Liu S.J., Liu H.H., Kwok Y., Lin C.L., Lin L.H., et al. A novel technology for the production of a heterologous lipoprotein immunogen in high yield has implications for the field of vaccine design. Vaccine. 2009; 27(9): 1400-9.
  24. Lu L., Hsieh M., Oriss T.B., Morel P.A., Starzl T.E., Rao A.S., et al. Generation of DC from mouse spleen cell cultures in response to GM-CSF: immunophenotypic and functional analyses. Immunology. 1995; 84(1): 127-34.
  25. Muccioli M., Pate M., Omosebi O., Benencia F. Generation and labeling of murine bone marrow-derived dendritic cells with Qdot nanocrystals for tracking studies. J. Vis. Exp. 2011; (52): e2785.
  26. Куприянов В.В., Николаева Л.И., Зыкова А.А., Махновский П.И. Изучение перспектив использования антигена NS4А вируса гепатита С для разработки мозаичной рекомбинантной вакцины с самоадъювантными свойствами. Эпидемиология и вакцинопрофилактика. 2017; 16(1): 61-7
  27. Bachmann M.F., Jennings G.T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 2010; 10(6): 787-96.
  28. Galdino A.S., Santos J.C., Souza M.Q., Nóbrega Y.K.M., Xavier M.A.E., Felipe M.S.S., et al. A novel structurally stable multiepitope protein for detection of HCV. Hepat. Res. Treat. 2016; 2016: 6592143.
  29. Chang K.M., Rehermann B., McHutchison J.G., Pasquinelli C., Southwood S., Sette A., et al. Immunological significance of cytotoxic T lymphocyte epitope variants in patients chronically infected by the hepatitis C virus. J. Clin. Invest. 1997; 100(9): 2376-85.
  30. Gerlach J.T., Ulsenheimer A., Gruner N.H., Jung M.C., Schraut W., Schirren C.A., et al. Minimal T-cell-stimulatory sequences and spectrum of HLA restriction of immunodominant CD4+ T-cell epitopes within hepatitis C virus NS3 and NS4 proteins. J. Virol. 2005; 79: 12425-33.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Koupriyanov V.V., Nikolaeva L.I., Zykova A.A., Makhnovskiy P.I., Kotlyarov R.Y., Vasilyev A.V., Ravin N.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».