Мукозальный иммунитет и вакцины против вирусных инфекций
- Авторы: Зайнутдинов С.С.1, Сиволобова Г.Ф.1, Локтев В.Б.1, Кочнева Г.В.1
-
Учреждения:
- ФБУН Государственный научный центр вирусологии и биотехнологии «Вектор» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)
- Выпуск: Том 66, № 6 (2021)
- Страницы: 399-408
- Раздел: ОБЗОРЫ
- URL: https://journal-vniispk.ru/0507-4088/article/view/118190
- DOI: https://doi.org/10.36233/0507-4088-82
- ID: 118190
Цитировать
Полный текст
Аннотация
Иммунитет слизистых оболочек (СО) реализуется через структурно-функциональную систему, называемую мукозо-ассоциированной лимфоидной тканью (МАЛТ; mucosa-associated lymphoid tissue, MALT). МАЛТ подразделяется на части (кластеры) в зависимости от их анатомического расположения, однако все они имеют идентичное строение: слой слизи, эпителиальная ткань, собственная пластинка СО и лимфоидные фолликулы. Плазматические клетки МАЛТ вырабатывают уникальный тип иммуноглобулинов (Ig) – IgA, обладающий способностью к полимеризации. При мукозальной иммунизации преобладающей формой этих антител (АТ) является секреторный димер (sIgA), в больших количествах концентрирующийся в СО. Мукозальные IgA действуют как первая линия защиты и эффективно нейтрализуют вирусные агенты на уровне входных ворот инфекции, предотвращая поражение эпителиальных клеток и генерализацию инфекционного процесса. На сегодняшний день лицензированы несколько мукозальных противовирусных вакцин, в состав которых входят аттенуированные штаммы соответствующих вирусов: полиомиелита, гриппа, ротавируса. Несмотря на огромные успехи, достигнутые с применением этих вакцинных препаратов, в частности по ликвидации полиомиелита, существенными недостатками использования аттенуированных вирусных штаммов, входящих в их состав, являются риск реактогенности и возможность реверсии к вирулентному штамму в процессе вакцинации. Тем не менее именно мукозальная вакцинация, имитируя естественное инфицирование, способна индуцировать быстрый и эффективный иммунный ответ и таким образом способствовать предотвращению, а возможно, и остановке вспышек многих вирусных инфекций. В настоящее время клинические испытания успешно проходит целый ряд интраназальных вакцин, основанных на новом векторном подходе, при котором для доставки протективно значимых иммуногенов патогенных вирусов используются безопасные вирусные векторы. Самым тестируемым вектором для интраназальных вакцинных препаратов является аденовирус, а наиболее значимым иммуногеном – S-белок SARSCoV-2. Исследуются также мукозальные векторные вакцины против респираторно-синцитиального вируса человека и вируса иммунодефицита человека 1 типа на основе вируса Сендай, способного бессимптомно реплицироваться в клетках бронхиального эпителия.
Полный текст
Открыть статью на сайте журналаОб авторах
С. С. Зайнутдинов
ФБУН Государственный научный центр вирусологии и биотехнологии «Вектор» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)
Email: fake@neicon.ru
ORCID iD: 0000-0001-5818-4402
630559, Новосибирская область, Кольцово, Россия
РоссияГ. Ф. Сиволобова
ФБУН Государственный научный центр вирусологии и биотехнологии «Вектор» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)
Email: fake@neicon.ru
ORCID iD: 0000-0002-8362-0314
630559, Новосибирская область, Кольцово, Россия
РоссияВ. Б. Локтев
ФБУН Государственный научный центр вирусологии и биотехнологии «Вектор» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)
Email: fake@neicon.ru
ORCID iD: 0000-0002-0229-321X
630559, Новосибирская область, Кольцово, Россия
РоссияГ. В. Кочнева
ФБУН Государственный научный центр вирусологии и биотехнологии «Вектор» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)
Автор, ответственный за переписку.
Email: kochneva@vector.nsc.ru
ORCID iD: 0000-0002-2420-0483
Кочнева Галина Вадимовна, д-р биол. наук, ведущий научный сотрудник, заведующая лабораторией вирусных гепатитов
630559, Новосибирская область, Кольцово, Россия
РоссияСписок литературы
- Terauchi Y., Sano K., Ainai A., Saito S., Taga Y., Ogawa-Goto K., et al. IgA polymerization contributes to efficient virus neutralization on human upper respiratory mucosa after intranasal inactivated influenza vaccine administration. Hum. Vaccin. Immunother. 2018; 14(6): 1351–61. https://doi.org/10.1080/21645515.2018.1438791
- Russell M.W., Moldoveanu Z., Ogra P.L., Mestecky J. Mucosal Immunity in COVID-19: A Neglected but Critical Aspect of SARSCoV-2 Infection. Front. Immunol. 2020; 11: 611337. https://doi.org/10.3389/fmmu.2020.611337
- Miquel-Clopes E.G., Bentley J.P., Stewart S.R., Carding S.R. Mucosal vaccines and technology. Clin. Exp. Immunol. 2019; 196(2):205–14. https://doi.org/10.1111/cei.13285
- Travis C.R. As plain as the nose on your face: The case for a nasal (mucosal) route of vaccine administration for Covid-19 disease prevention. Front. Immunol. 2020; 11: 591897. https://doi.org/10.3389/fmmu.2020.591897
- Лусс Л.В., Шартанова Н.В., Назарова Е.В. Аллергический и неаллергический ринит: эффективность барьерных методов. Эффективная фармакотерапия. 2018; (17): 10–6.
- Козлов И.Г. Микробиота, мукозальный иммунитет и антибиотики: тонкости взаимодействия. Русский медицинский журнал. 2018; 26(8-1): 19–27.
- Ye L., Schnepf D., Staeheli P. Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat. Rev. Immunol. 2019; 19(10): 614–25. https://doi.org/10.1038/s41577-019-0182-z
- Broggi A., Tan Y., Granucci F., Zanoni I. IFN-λ suppresses intestinal inflammation by non-translational regulation of neutrophil function. Nat. Immunol. 2017; 18(10): 1084–93. https://doi.org/10.1038/ni.3821
- Fruitwala S., El-Naccache D.W., Chang T.L. Multifaceted immune functions of human defensins and underlying mechanisms. Semin. Cell Dev. Biol. 2019; 88: 163–72. https://doi.org/10.1016/j.semcdb.2018.02.023
- Щубелко Р.В., Зуйкова И.Н., Шульженко А.Е. Мукозальный иммунитет верхних дыхательных путей. Иммунология. 2018; 39(1): 81–8. https://doi.org/10.18821/0206-4952-2018-39-1-81-88
- Хаитов М.Р., Ильина Н.И., Лусс Л.В., Бабахин А.А. Мукозальный иммунитет респираторного тракта и его роль при профессиональных патологиях. Медицина экстремальных ситуаций. 2017; 61(3): 8–24.
- Coffey J.W., Gaiha G.D., Traverso G. Oral biologic delivery: advances towards oral subunit, DNA and mRNA vaccines and the potential for mass vaccination during pandemics. Annu. Rev. Pharmacol. Toxicol. 2021; 61: 517–40. https://doi.org/10.1146/annurev-pharmtox-030320-092348
- Kumar N., Arthur C.P., Ciferri C., Matsumoto M.L. Structure of the secretory immunoglobulin A core. Science. 2020; 367(6481):1008–14. https://doi.org/10.1126/science.aaz5807
- Hickey A.J., Garmise R.J. Dry powder nasal vaccines as an alternative to needle-based delivery. Crit. Rev. Ther. Drug Carr. Syst. 2009; 26(1): 1–27. https://doi.org/10.1615/critrevtherdrugcarriersyst.v26.i1.10
- Bennett J.V., De Castro J.F., Valdespino-Gomez J.L., Garcia-Garcia M. de. L., Islas-Romero R., Echaniz-Aviles G., et al. Aerosolized measles and measles-rubella vaccines induce better measles antibody booster responses than injected vaccines: Randomized trials in Mexican schoolchildren. Bull. World Health Organ. 2002; 80(10):806–12. https://apps.who.int/iris/handle/10665/268635 (accessed November 14, 2021).
- Hellfritzsc M., Scherlie R. Mucosal vaccination via the respiratory tract. Pharmaceutics. 2019; 11(8): 375. https://doi.org/10.3390/pharmaceutics11080375
- Kozlowski P.A., Aldovini A. Mucosal vaccine approaches for prevention of HIV and SIV transmission. Curr. Immunol. Rev. 2019; 15(1): 102–22. https://doi.org/10.2174/1573395514666180605092054
- Nyombayire J., Anzala O., Gazzard B., Karita E., Bergin F., Hayes P., et al. First-in-human evaluation of the safety and immunogenicity of an intranasally administered replication-competent Sendai virus-vectored HIV type 1 gag vaccine: Induction of potent T-cell or antibody responses in prime-boost regimens. J. Infect. Dis. 2017; 215(1): 95–104. https://doi.org/10.1093/infdis/jiw500
- Jorba J., Diop O.M., Iber J., Henderson E., Zhao K., Sutter R.W., et al. Update on vaccine-derived polioviruses – worldwide, January 2017 – June 2018. MMWR Morb. Mortal. Wkly Rep. 2018; 67(42):1189–94. https://doi.org/10.15585/mmwr.mm6742a5
- Dhere R., Yeolekar L., Kulkarni P., Menon R., Vaidya V., Ganguly M., et al. A pandemic influenza vaccine in India: From strain to sale within 12 months. Vaccine. 2011; 29(Suppl. 1): A16–21. https://doi.org/10.1016/j.vaccine.2011.04.119
- Belshe R.B., Edwards K.M., Vesikari T., Black S.V., Walker R.E., Hultquist M., et al. Attenuated versus inactivated influenza vaccine in infants and young children. N. Engl. J. Med. 2007; 356(7): 685–96. https://doi.org/10.1056/NEJMoa065368
- Murphy T.V., Gargiullo P.M., Massoudi M.S., Nelson D.B., Jumaan A.O., Okoro C.A., et al. Intussusception among infants given an oral rotavirus vaccine. N. Engl. J. Med. 2001; 344(8): 564–72. https://doi.org/10.1056/NEJM200102223440804
- Rotavirus vaccines WHO position paper: January 2013 – Recommendations. Vaccine. 2013; 31(52): 6170–1. https://doi.org/10.1016/j.vaccine.2013.05.037
- Adderson E., Branum K., Sealy R.E., Jones B.G., Surman S.L., Penkert R. Safety and immunogenicity of an intranasal Sendai virus-based human parainfluenza virus type 1 vaccine in 3- to 6-yearold children. Clin. Vaccine Immunol. 2015; 22(3): 298–303. https://doi.org/10.1128/CVI.00618-14
- Huang F.S., Bernstein D.I., Slobod K.S., Portner A., Takimoto T., Russell S.J., et al. Safety and immunogenicity of an intranasal Sendai virus-based vaccine for human parainfluenza virus type I and respiratory syncytial virus (SeVRSV) in adults. Hum. Vaccin. Immunother. 2021; 17(2): 554–9. https://doi.org/10.1080/21645515.2020.1779517
- Tasker S., O’Rourke A.N., Suyundikov A., Booth P.-G.J., Bart S., Krishnan V., et al. Safety and immunogenicity of a novel intranasal influenza vaccine (NasoVAX): A phase 2 randomized, controlled trial. Vaccines. 2021; 9(3): 224. https://doi.org/10.3390/vaccines9030224
- Lund F.E., Randall T.D. Scent of a vaccine. Science. 2021; 373(6553): 397–9. https://doi.org/10.1126/science.abg9857
- King R.G., Silva-Sanchez A., Peel J.N., Botta D., Dickson A.M., Pinto A.K., et al. Single-dose intranasal administration of AdCOVID elicits systemic and mucosal immunity against SARS-CoV-2 and fully protects mice from lethal challenge. Vaccines (Basel). 2021; 9(8): 881. https://doi.org/10.3390/vaccines9080881
- Hassan A.O., Kafai N.M., Dmitriev I.P., Fox J.M., Smith B.K., Harvey I.B., et al. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell. 2020; 183(1): 169–84.E13. https://doi.org/10.1016/j.cell.2020.08.026
- Hassan A.O., Shrihari S., Gorman M.J., Ying B., Yuan D., Raju S., et al. An intranasal vaccine durably protects against SARSCoV-2 variants in mice. Cell Rep. 2021; 36(4): 109452. https://doi.org/10.1016/j.celrep.2021.109452
- Hassan A.O., Feldmann F., Zhao H., Curiel D.T., Okumura A., Tang-Huau T.L., et al. A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques. Cell Rep. Med. 2021; 2(4): 100230. https://doi.org/10.1016/j.xcrm.2021.100230
- Doremalen N., Purushotham J.N., Schulz J.E., Holbrook M.G., Bushmaker T., Carmody F., et al. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARSCoV-2 D614G challenge in preclinical models. Sci. Transl. Med. 2021; 13(607): eabh0755. https://doi.org/10.1126/scitranslmed.abh0755
- Gallo O., Locatello L.G., Mazzoni A., Novelli L., Annunziato F. The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol. 2020; 14(2): 305–16. https://doi.org/10.1038/s41385-020-00359-2
- Moreno-Fierros L., García-Silva I., Rosales-Mendoza S. Development of SARS-CoV-2 vaccines: should we focus on mucosal immunity? Expert. Opin. Biol. Ther. 2020; 20(8): 831–6. https://doi.org/10.1080/14712598.2020.1767062
- Mudgal R., Nehul S., Tomar S. Prospects for mucosal vaccine: shutting the door on SARS-CoV-2. Hum. Vaccin. Immunother. 2020; 16(12): 2921–31. https://doi.org/10.1080/21645515.2020.1805992
Дополнительные файлы
