$V \coprod K 547.461.3 + 547.571 + 547.594.1 + 547.831.88 + 547.814 + 548.737$

МНОГОКОМПОНЕНТНЫЙ СИНТЕЗ ЦИКЛОАЛКА[*b*]ПИРИДИНОВ И ПИРАНОВ

© 2023 г. И. В. Дяченко^a, В. Д. Дяченко^a, П. В. Дороватовский^b, В. Н. Хрусталев^{c, d}, В. Г. Ненайденко^e, *

^а Луганский государственный педагогический университет, Украина, 91011 Луганск, ул. Оборонная, 2 ^b Национальный исследовательский центр «Курчатовский институт»,

Россия, 123182 Москва, ул. Академика Курчатова, 1

^c ФГАОУ ВО «Российский университет дружбы народов», Россия, 117198 Москва, ул. Миклухо-Маклая, 6
 ^d ФГБУН Институт органической химии им. Н.Д. Зелинского, Россия, 119991 Москва, Ленинский просп., 47
 ^e ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»,

Россия, 119991 Москва, Ленинские горы, 1, стр. 3 *e-mail: nenajdenko@gmail.com

Поступила в редакцию 13.08.2022 г. После доработки 27.08.2022 г. Принята к публикации 28.08.2022 г.

С помощью многокомпонентной конденсации синтезированы новые производные циклоалка[b]пиридинов и пиранов. Строение ряда соединений изучено с помощью рентгеноструктурного анализа.

Ключевые слова: пиридин, пиран, многокомпонентная конденсация, реакция Михаэля, конденсация Кнёвенагеля, переаминирование, рентгеноструктурный анализ

DOI: 10.31857/S0514749223070066, EDN: HSTBUD

ВВЕДЕНИЕ

Среди производных циклоалка[b] пиридинов обнаружены селективные ингибиторы киназ [1, 2], препараты с противоопухолевым [3], противовоспалительным и анальгезирующим [4] действием. Они пригодны для лечения атеросклероза, липопротеинемии и гиперпротеинемии [5]. Ингибиторы SARS-Cov-2 [6], противораковые препараты [7] и селективные ингибиторы ферментов [8] найдены среди циклоалка[b] пиранов. Приведенные выше данные указывают на высокий фармакологический потенциал гетероциклов этого типа.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В продолжение исследований циклоалка[b]пиридинов [9–13] и пиранов [14, 15] нами изучены новые варианты многокомпонентных конденсаций, приводящие к данным гетероциклическим системам. Установлено, что взаимодействие 5-метилфурфурола 1a с цианотиоацетамидом 2, 1-(циклогекс-1-ен-1-ил)пиперидином **3b** и α-бромметилциклопропилкетоном **4a**, протекающее в абсолютном этаноле при 20°C в присутствии пиперидина, приводит к образованию 5,6,7,8-тетрагидрохинолин-3-карбонитрила **5**. Ароматизация дигидропиридинового цикла осуществляется, по-видимому, под действием кислорода воздуха. Применение в данной конденсации ароматических альдегидов **1b-d**, енаминов **3a**, **b**, алкилирующих реагентов **4b-d** и этилата натрия при прочих равных условиях заканчивается образованием циклоалка[*b*]замещенных 3-амино-4-арил-2-*Z*-тиено-[2,3-*b*]пиридинов **6a-c** (схема 1).

Вероятный механизм превращения включает образование замещенных акрилонитрилов **A** по Кнёвенагелю. Затем следует алкилирование енаминов **3a**, **b** алкенами **A** [16]. Образующиеся аддукты **B** претерпевают внутримолекулярное переаминирование, что приводит к формированию 1,4-дигидропиридиновых циклов, стабилизирую-

1, R = 5-Метилфуран-2-ил (a), 4-МеОС $_6$ Н $_4$ (b), 4-ClC $_6$ H $_4$ (c), 4-CH(Me) $_2$ C $_6$ H $_4$ (d); 3, n = 1 (a), 2 (b); 4, Hlg = Br, Z = циклопропилкарбонил (a); Cl, 2-MeC $_6$ H $_4$ NHCO (b); Cl, CONH $_2$ (c); Cl, COOEt (d); 6, R = 4-MeOC $_6$ H $_4$, n = 2, Z = 2-MeC $_6$ H $_4$ NHCO (a), 4-ClC $_6$ H $_4$, 1, CONH $_2$ (b); 4-CH(Me) $_2$ C $_6$ H $_4$, 1, COOEt (c).

щихся в виде солей С. Их алкилирование соединениями 4а—d протекает региоселективно по атому серы с образованием тиоэфиров типа 5. Однако, повышение основности реакционной среды путем прибавления EtONa способствует внутримолекулярному замыканию тиофенового кольца, что и приводит к образованию конечных структур 6а—с. Многокомпонентная конденсация, состоящая из 2-нитробензальдегида 4f, цианотиоацетамида 2, димедона 7 и 3-бромциклогекс-1-ена 8, протекающая в этаноле при 20°С в присутствии пиперидина, заканчивается образованием нитрила 9 (схема 2).

Введение в конденсацию с 4-хлорбензальдегидом 1c цианотиоацетамида 2, димедона 7 и N-(4-бромфенил)-2-хлорацетамида 4f при катализе процесса пиперидином и EtONa позволило синтезировать амид 10, полученный нами ранее исходя из 4-хлорбензилиденцианотиоацетамида [13]. Вовлечение в рассматриваемую конденсацию бензальдегида 10, цианотиоацетамида 2, димедона 7, метилиодида 4е и брома привело к образованию нитрила 11. Логично предположить участие интермедиатов A, D, E и F в ходе данного взаимодействия (схема 2).

Замена цианотиоацетамида 2 на малононитрил 11 принципиально не меняет схему конденсации: β-фенилпропаналь 1g взаимодействует с малононитрилом 11 с образованием соответствующего алкена G, затем следует присоединение к нему димедона 7 с последующей циклизацией аддукта Михаэля в пиран H. Алкилирование последнего N-(4-бромфенил)-2-хлорацетамидом 4f в присутствии водного раствора КОН протекает региоселективно по атому C⁶ хроменовой системы с образованием 13 (схема 3). Многокомпонентная конденсация 3-циклогексен-1-карбоксальдегида 1h, малононитрила 12, циклогексан-1,3-диона 14 и

1, R = 2-NO₂C₆H₄ (e), Ph (f); 4, Hlg = Cl, Z = хинолин-8-илкарбамоил (e), I, H (f).

бензальдегида 1e эффективно протекает в этаноле при 20°С в присутствии EtONa. Ее продуктом является нитрил 15. Образование соединения 15 стало возможным в результате протекания следующих процессов: на первой стадии реализуется реакция Кнёвенагеля, приводящая к бензальмалононитрилу G. К последнему присоединяется СН-кислота 14 по Михаэлю, образуя соответствующий аддукт, внутримолекулярно циклизующийся в бензопиран I. На следующем этапе реакции осуществляется вторая конденсация Кнёвенагеля, что и приводит к конечному продукту 15 (схема 3).

Трехкомпонентная конденсация изопропилиденмалононитрила 16, димедона 7 и 4-этоксибензилиденцианоуксусного эфира 17, протекающая в ДМФА при 20°С в присутствии Et₃N и водного раствора КОН, приводит к образованию 4*H*-хромен-3-карбонитрила 18 (схема 4). Вероятный механизм данного взаимодействия состоит из следующих стадий: к алкену 16 по Михаэлю присоединяется СН-кислота 7, что приводит в конечном итоге к конденсированному пирану К. Затем следует присоединение по Михаэлю кетона К к активированному алкену 17. Образовавшийся аддукт L эли-

$$1g, h + CN$$

$$1g,$$

 $1, R = Ph(CH_2)_2$ (g), циклогекс-3-ен-1-ил (h); 4, $Hlg = Cl, Z = 4-BrC_6H_4NHCO$ (g).

минирует цианоуксусный эфир и стабилизируется в виде соединения **18**. Таким образом, на последней стадии конденсации реализовалась реакция Михаэля, протекающая по типу обмена метиленовыми компонентами [17] (схема 4). Отметим, что ранее нами обнаружен такой вариант ее протекания с малононитрилом [18], цианотиоацетамидом [19] и цианотио(селено)ацетамидами [20].

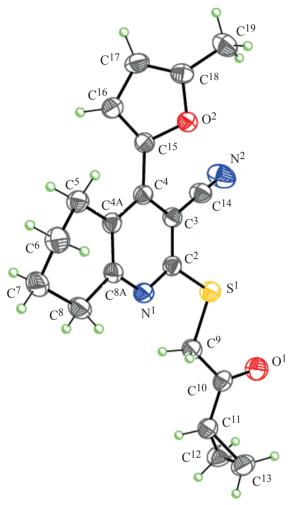
Спектральные характеристики подтверждают строение синтезированных соединений (см. эксперим. часть). В ИК спектрах наблюдаются характеристические полосы поглощения сопряженной цианогруппы, карбонильной группы, а также полосы поглощения валентных и деформационных колебаний аминогруппы. В спектрах ЯМР ¹Н присутствуют сигналы всех протонов молекул синтезированных соединений в соответствующих областях б с характерным расщеплением. В спектрах ЯМР ¹³С наблюдаются сигналы всех атомов углерода всех полученных веществ. С выяснения механизма изучаемых реакций и однозначного установления их продуктов соединения 5, 6b, с и 10 изучены

методом РСА. Строение молекулы соединения **5** и соответствующая нумерация атомов представлены на рис. 1.

Циклогексеновый цикл основного бициклического тетрагидрохинолинового фрагмента в молекуле 5 принимает конформацию несимметричного кресла с отклонением атомов углерода С6 и C^7 от базальной плоскости, проходящей через остальные атомы цикла, на -0.461(5) и 0.323(5)°, соответственно. Скелетная цепочка S1-C9-C10-С11 оксоциклопропилэтилтиолятного заместителя имеет наиболее стерически предпочтительную транс-конформацию [торсионный угол равен $-178.11(18)^{\circ}$] и располагается практически в плоскости пиридинового цикла [угол скручивания равен 15.96(12)°]. Фурановый заместитель развернут относительно плоскости пиридинового цикла на угол 29.44(6)°. Молекула соединения 5 содержит асимметрический центр при атоме углерода С¹¹. Кристалл соединения **5** представляет рацемат. В кристалле, молекулы соединения 5 образуют стопки вдоль кристаллографичекой оси b и рас-

Схема 4

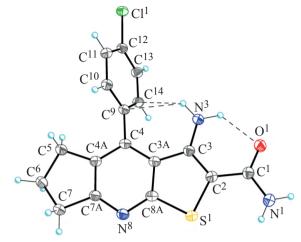
полагаются на ван-дер-ваальсовых расстояниях (рис. 2).

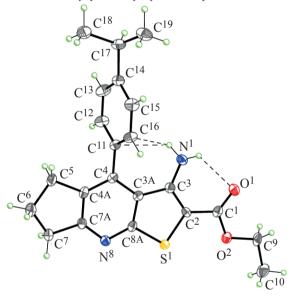

Строение молекул соединений **6b** и **c** и соответствующая нумерация атомов представлены на рис. 3 и 4.

Циклопентеновый цикл основного трициклического 6.7-дигидро-5H-циклопента[b]тиено[3.2е пиридинового фрагмента в молекулах 6b и с принимает типичную конформацию конверт с отклонением атома углерода C^6 от базальной плоскости, проходящей через остальные атомы цикла, на 0.418(4) и 0.358(6)°, соответственно. Исключая атомы водорода, карбоксамидный заместитель в 6b и карбоксилатный заместитель в 6с практичекски копланарны тиено[3,2-е]пиридиновому фрагменту (среднеквадратичное отклонение атомов равно 0.019 и 0.045°, соответственно). Угол разворота фенильного заместителя относительно базальной плоскости трициклического фрагмента равен $61.89(3)^{\circ}$ в **6b** и $68.24(7)^{\circ}$ в **6c**. Подобное строение молекул 6b и с стабилизируется внутримолекулярными водородными связями N-H···O (табл. 1) и N-H··· π (C=C) [в **6b**: H^{3B}···C⁹ 2.48(2)°, N³···C⁹ $3.090(2)^{\circ}$, угол N^3 – H^{3B} ... C^9 $124(2)^{\circ}$; H^{3B} ... C^{14} $2.58(2)^{\circ}$, N^3 ... C^{14} $3.063(2)^{\circ}$, угол N^3 – H^{3B} ... C^{14} 114(2)°; в **6с**: H^{1В}····С¹¹ 2.42(4)°, N¹····С¹¹ 3.080(4)°, угол N¹-H^{1В}···С¹¹ 133(4)°: H^{1В}···С¹⁶ 2.54(4)°. N^1 ... C^{16} 3.172(5)°, угол N^1 – H^{1B} ... C^{16} 130(3)°] (рис. 3 и 4).

Атомы азота амино-групп N^1 и N^3 в **6b** имеют планарную и пирамидальную конфигурацию, соответственно [суммы валентных углов равны 360(6) и $348(5)^\circ$]; в **6c** атом азота амино-группы имеет планарную конфигурацию [сумма валентных углов равна $358(10)^\circ$]. В кристалле соединений **6b** и **c** молекулы образуют центросимметричные димеры за счет межмолекулярных водородных связей N—H···O (табл. 1, рис. 5 и 6). Димеры упакованы в стопки вдоль кристаллографических осей b и a, соответственно, и располагаются на ван-дер-ваальсовых расстояниях (рис. 7 и 8).

Строение молекулы соединения **10** и соответствующая нумерация атомов представлены на рис. 9.


Циклогексеноновый цикл основного трициклического 4,5,6,7,8,9-гексагидротиено[2,3-b]хинолинового фрагмента в молекуле 10 принимает конформацию несимметричного *полукресла* с отклонением атомов углерода C^6 и C^7 от базальной плоскости, проходящей через остальные атомы цикла, на -0.144(7) и $0.545(7)^\circ$, соответственно. Карбоксамидный заместитель практически копланарен центральному тиено[2,3-b]хинолиновому фрагменту [угол скручивания равен $14.6(6)^\circ$], в то


Рис. 2. Кристаллическая структура соединения **5** вдоль кристаллографичекой оси b

время как хинолиновый заместитель скручен на угол 47.01(8)° по отношению к этому фрагменту. Фенильный заместитель развернут относительно базальной плоскости тиено[2,3-b]хинолинового цикла на угол 76.26(8)°. Такое строение молекулы 10 определяется наличием внутримолекулярных водородных связей N-H···O, N-H···S, N-H···N (табл. 1) и N–H··· π (C=C) [H^{3B}···C¹⁷ 2.50(5)°, N³···C¹⁷ $3.011(5)^{\circ}$, угол N^3 – H^{3B} ... C^{17} $116(3)^{\circ}$; H^{3B} ... C^{22} $2.71(5)^{\circ}$, $N^3 \cdots C^{22}$ $3.490(5)^{\circ}$, угол $N^3 - H^{3B} \cdots C^{22}$ 145(4)°] (рис. 9). В кристалле соединения **10** молекулы связаны в цепочки вдоль кристаллографической оси в за счет межмолекулярных невалентных взаимодействий $Cl^1...N^9$ [x, y-1, z] 3.178(3)° (рис. 10). Цепочки образуют стопки вдоль кристаллографической оси а и расположены на ван-дер-ваальсовых расстояниях (рис. 10).

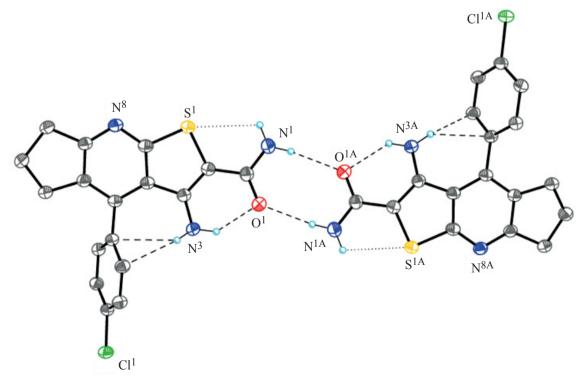
ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 59 № 7 2023

Рис. 3. Молекулярная структура соединения **6b** в представлении атомов эллипсоидами анизотропных смещений с 50% вероятностью. Штриховыми линиями показаны внутримолекулярные водородные связи

Рис. 4. Молекулярная структура соединения **6c** в представлении атомов эллипсоидами анизотропных смещений с 50% вероятностью. Штриховыми линиями показаны внутримолекулярные водородные связи

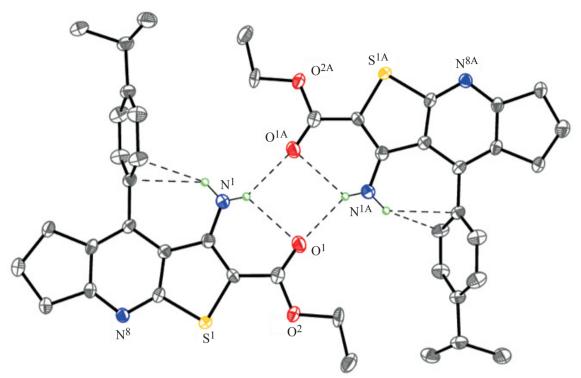
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Параметры элементарных ячеек и интенсивности отражений для кристаллов соединений **5** и **6c** измерены на дифрактометре Bruker APEX-II ССD (графитовый монохроматор, φ- и ω-сканирование). Обработка экспериментальных данных проведена с помощью программы SAINT [21]. Для полученных данных проведен учет поглощения рентгеновского излучения по программе SADABS [22]. Параметры элементарных ячеек и интен-


Таблица 1. Водородные связи в структурах 6b , 6c и 10 (Å и гра	Таблина 1	. Волоролные	связи в	структурах	6h	6с и 10	(Å и град
--	-----------	--------------	---------	------------	----	---------	-----------

тионная туродородные с	wind it begopedible email belykrypur ob, of it is (it is rpug)								
D–H···A	d(D–H)	d(H···A)	d(D···A)	Угол (DHA)					
Соединение 6b									
N^1 – H^{1A} ···· O^{1a}	0.88(3)	2.17(3)	3.039(2)	172(2)					
N^1 – H^{1B} ··· S^1	0.86(3)	2.69(2)	3.093(2)	110(2)					
N^3 – H^{3A} O^1	0.91(2)	2.02(2)	2.711(2)	132(2)					
	Соединение 6с								
N^1 – H^{1A} O^1	0.78(5)	2.30(4)	2.832(4)	126(4)					
N^1 - H^{1A} O^{1b}	0.78(5)	2.26(5)	2.946(4)	146(4)					
	Соединение 10								
N^1 – H^1 ···· S^1	0.84(5)	2.60(4)	3.002(3)	110(4)					
N^1 – H^1 ··· N^2	0.84(5)	2.25(5)	2.657(5)	110(4)					
N ³ -H ^{3A} O ¹	0.90(5)	2.17(5)	2.832(4)	130(4)					

a Кристаллографические операции для генерации симметрически эквивалентных атомов: -x+1, -y, -z+1


сивности отражений для кристаллов соединений **6b** и **10** измерены на синхротронной станции «РСА» Национального исследовательского центра «Курчатовский институт», используя двухкоординатный детектор Rayonix SX-165 CCD (ф-ска-

нирование с шагом 1.0°). Обработка экспериментальных данных проведена с помощью программы iMOSFLM, входящей в комплекс программ ССР4 [23]. Для полученных данных проведен учет поглощения рентгеновского излучения по програм-

Рис. 5. Центросимметричные димеры в кристалле соединения **6b**. Штриховыми и пунктирными линиями показаны внутри- и межмолекулярные водородные связи

 $^{^{}b}$ Кристаллографические операции для генерации симметрически эквивалентных атомов: -x, -y+1, -z+1

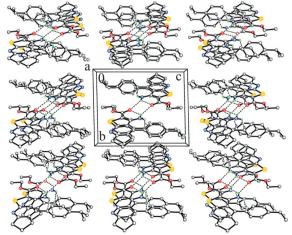


Рис. 6. Центросимметричные димеры в кристалле соединения **6с**. Штриховыми линиями показаны внутри- и межмолекулярные водородные связи

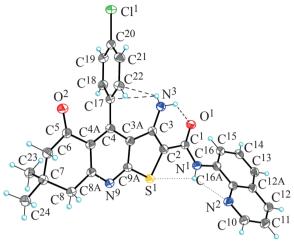

ме Scala [24]. Основные кристаллоструктурные данные и параметры уточнения представлены в табл. 2. Структуры определены прямыми методами и уточнены полноматричным методом наименьших квадратов по F^2 в анизотропном прибли-

Рис. 7. Кристаллическая структура соединения **6b** вдоль кристаллографичекой оси b

жении для неводородных атомов. Атомы водорода амино-групп в соединениях **6b**, **c** и **10** выявлены объективно в разностных Фурье-синтезах и уточнены изотропно с фиксированными параметрами смещения $[U_{\rm изо}({\rm H})=1.2U_{\rm экв}({\rm N})]$. Положения остальных атомов водорода во всех соединениях рассчитаны геометрически и включены в уточнение с фиксированными позиционными параметрами (модель *наездника*) и изотропными параметрами смещения $[U_{\rm iso}({\rm H})=1.5U_{\rm eq}({\rm C})$ для ${\rm CH_3}$ -групп

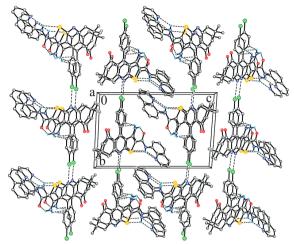

Рис. 8. Кристаллическая структура соединения **6b** вдоль кристаллографичекой оси a

Рис. 9. Молекулярная структура соединения **10** в представлении атомов эллипсоидами анизотропных смещений с 50% вероятностью. Штриховыми и пунктирными линиями показаны внутримолекулярные водородные связи

и $1.2U_{\rm eq}({\rm C})$ для остальных групп]. Все расчеты проведены с использованием комплекса программ SHELXTL [25]. Таблицы координат атомов, длин связей, валентных и торсионных углов и анизотропных параметров смещения для соединений **5**, **6b**, **c** и **10** депонированы в Кембриджском Банке Структурных Данных, номера депонирования — CCDC 2190286 (**5**), CCDC 2190287 (**6b**), CCDC 2190288 (**6c**) и CCDC 2190289 (**10**).

ИК спектры получали на приборе Varian Vertex 70 в таблетках КВг. Спектры ЯМР ¹Н и ¹³С регистрировали на спектрофотометре Varian VXR-400 (399.97 и 100 МГц соответственно) в растворах DMSO- d_6 , внутренний стандарт – ТМС. Для соединений **6a**, **b** и **18** – в растворах CDCl₃. Масс-спектры снимали на спектрометре Agilent 1100 Series с селективным детектором Agilent LS/MSDLS (образцы вводили в матрице СН₃СООН, ионизация ЭУ, 70 эВ) (соединения 11 и 13). Для остальных соединений масс-спектры получали на масс-спектрометре высокого разрешения Orbitrap Elite. Образец для HRMS растворяли в 1 мл ДМСО, разбавляли в 100 раз 1%-ной НСООН в СН₂СN, вводили шприцевым насосом со скоростью 40 мкл/мин в источник ионизации электрораспылением. Потоки газов источника были отключены, напряжение на игле составляло 3.5 кВ, температура капилляра 275°С. Масс-спектр регистрировали в режимах положительных и отрицательных ионов в орбитальной

Рис. 10. Кристаллическая структура соединения **10** вдоль кристаллографичекой оси a

ловушке с разрешением 480000. Внутренние калибранты — ион 2ДМСО + H^+ (m/z 157.03515) в положительных ионах и додецилсульфат-анион (m/z 265.14789) в отрицательных ионах. Температуры плавления определяли на блоке Кофлера. Ход реакции и чистоту полученных соединений контролировали методом ТСХ на пластинках Silufol UV-254 в системе ацетон-гексан (3:5), проявление парами йода и УФ-облучением.

4-(5-Метилфуран-2-ил)-2-(2-оксо-2-циклопропилэтилтио)-5,6,7,8-тетрагидрохинолин-3карбонитрил (5). К перемешиваемой смеси 1.0 мл (10 ммоль) 5-метилфурфурола **1а** и 1.0 г (10 ммоль) цианотиоацетамида 2 в 25 мл абсолютного этанола при 20°C прибавляли 1 каплю пиперидина, перемешивали 30 мин до начала кристаллизации 5-фурфурилиденцианотиоацетамида А и прибавляли 1.7 г (10 ммоль) енамина 3b, после чего перемешивали 1 ч и оставляли. Через 24 ч при перемешивании прибавляли 1.63 г (10 ммоль) бромацетциклопропилкетона 4а, перемешивали 4 ч и разбавляли равным объемом воды. Образовавшийся осадок отфильтровывали и последовательно промывали водой, этанолом и гексаном. Выход 2.6 г (75%), желтые иглообразные кристаллы, т.пл. 128-130°C (*n*-BuOH). ИК спектр, v, см $^{-1}$: 2219 (С≡N), 1703 (С=О). Спектр ЯМР ¹Н, δ, м.д.: 0.75–0.81 м (2Н, $H_{\text{цикопропил}}^2$), 0.83–0.97 м (2H, $H_{\text{цикопропил}}^3$), 1.59– 1.72 м (2H, CH₂), 1.74–1.81 м (2H, CH₂), 2.20– 2.28 м (1H, $H_{\text{цикопропил}}^1$), 2.34 с (3H, Me), 2.65 т (2H, ${\rm CH_2},\, J$ 6.1 ${\rm \Gamma II}),\, 2.81$ т (2H, ${\rm CH_2},\, J$ 6.5 ${\rm \Gamma II}),\, 4.25$ с (2H, SCH₂), 6.36 д (1H, H⁴_{фурил}, J 1.8 Гц), 6.94 д

Таблица 2. Кристаллоструктурные данные для соединений 5, 6b, с и 10.

Соединение	5	6b	6c	10
Элементный состав	$\mathrm{C_{20}H_{20}N_{2}O_{2}S}$	C ₁₇ H ₁₄ N ₃ OSCl	$C_{22}H_{24}N_2O_2S$	C ₂₉ H ₂₃ N ₄ O ₂ SCl
Молекулярная масса	352.44	343.82	380.49	527.02
λ, Å	0.71073	0.79313	0.71073	0.79475
<i>T</i> , K	296(2)	100(2)	150(2)	100(2)
Размеры монокристалла, мм	0.12×0.20×0.30	0.10×0.11×0.15	0.20×0.30×0.30	0.02×0.05×0.10
Сингония	Моноклинная	Моноклинная	Триклинная	Триклинная
Пространственная группа	P2 ₁ /c	P2 ₁ /c	<i>P</i> -1	P-1
a, Å	10.9178(3)	12.819(3)	7.5568(9)	5.5880(11)
b, Å	7.6136(2)	7.9099(16)	10.3852(12)	12.011(2)
c, Å	21.5532(5)	15.903(3)	12.7972(15)	18.631(4)
α, град	90	90	88.703(4)	93.26(3)
β, град	101.9900(10)	108.862(10)	89.288(3)	90.10(3)
g	90	90	89.646(3)	100.57(3)
V, Å ³	1752.50(8)	1525.9(5)	1004.0(2)	1227.2(4)
Z	4	4	2	2
d_{pacy} , Γ -cm ⁻³	1.336	1.497	1.259	1.426
F(000)	744	712	404	548
μ, мм ⁻¹	0.201	0.527	0.180	0.370
$2\theta_{\text{макс}}$, град	2.84–30.27	1.87–31.01	2.50-30.54	1.22-31.00
Измеренных отражений	32782	12086	10427	18062
Независимых отражений, R_{int}	5159, 0.057	3374, 0.035	5819, 0.043	5404, 0.057
Наблюденных отражений [с $I > 2\sigma(I)$]	3518	2896	3937	4228
Уточняемых параметров	227	221	253	347
$R_1 [I > 2\sigma(I)]$	0.071	0.042	0.098	0.067
wR_2 (все данные)	0.183	0.115	0.225	0.186
GOF no F^2	1.044	1.039	1.008	1.011
$T_{\mathrm{мин}}$; $T_{\mathrm{макс}}$	0.936; 0.966	0.888; 0.919	0.940; 0.960	0.950; 0.990
Коэффициент экстинкции	_	0.024(2)	_	0.032(3)
$\Delta \rho_{\text{makc}}; \Delta \rho_{\text{muh}}, e Å^{-3}$	0.662; -0.267	0.341; -0.493	0.995; -0.363	0.561; -0.364

(1H, ${\rm H}_{\rm фурил}^3$, J 1.8 Γ ц). Спектр ЯМР 13 С, δ , м.д.: 11.2 (2C), 13.8, 20.3, 21.9, 22.4, 27.0, 33.4, 100.9, 109.0, 116.2, 117.3, 125.9, 140.9, 144.8, 155.1, 158.3, 161.9, 204.1. Масс-спектр (HRMS, ESI), m/z: 353.1327 $[M+{\rm H}]^+$. ${\rm C}_{20}{\rm H}_{20}{\rm N}_2{\rm O}_4{\rm S}$. $[M+{\rm H}]^+$ 353.1245.

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 59 № 7 2023

Циклоалка[*b*]замещенные 3-амино-4-арил-2-*Z*-тиено[2,3-*b*]пиридины 6а-с (общая мето-дика). К перемешиваемой смеси 10 ммоль соответствующего ароматического альдегида 1b-d и 1.0 (10 ммоль) цианотиоацетамида 2 в 20 мл аб-

солютного этанола при 20°C прибавляли 1 каплю пиперидина, перемешивали 30 мин и прибавляли 10 ммоль енамина 3а, b, после чего перемешивали 4 ч и и оставляли. Через 24 ч при перемешивании прибавляли 10 ммоль алкилирующего реагента 4b—d, перемешивали 1 ч и прибавляли раствор, приготовленный из 0.23 г Na и 20 мл абсолютного этанола. Затем реакционную смесь перемешивали 2 ч и оставляли на 24 ч, после чего разбавляли равным объемом воды, отфильтровывали образовавшийся осадок и промывали водой, этанолом и гексаном.

3-Амино-4-(4-метоксифенил)-*N*-(*о*-толил)-**5,6,7,8-тетрагидротиено**[**2,3-***b*]хинолин-**2**-карбоксамид (ба). Выход 3.7 г (83%), желтые кристаллы, т.пл. 268–270°С (AcOH). ИК спектр, v, см⁻¹: 3412, 3332, 3238 (NH, NH₂), 1668 (CONH), 1645 (δNH₂). Cπεκτρ ЯΜР ¹H, δ, м.д.: 1.55–1.72 м (2H, CH₂), 1.76–1.82 м (2H, CH₂), 2.19 с (3H, Me), 2.28– 2.33 m (2H, CH₂), 2.81–3.02 m (2H, CH₂), 3.83 c (3H, MeO), 5.65 уш.с (2H, NH₂), 7.01–7.23 м (4H_{аром}), 7.22 д (2 ${\rm H}_{\rm adom}$, J 7.2 Γ ц), 7.26 д (2 ${\rm H}_{\rm apom}$, J 7.2 $\hat{\Gamma}$ ц), 9.07 уш.с (1H, NHCO). Спектр ЯМР ¹³С, δ, м.д.: 16.1, 22.6, 22.8, 26.6, 33.5, 55.1, 90.5, 94.4, 97.3, 100.2, 101.6, 104.9, 103.3, 107.5, 110.2, 111.1, 115.0 (2C), 119.4, 120.2, 127.2 (2C), 128.6, 130.0 (2C), 132.2. Macc-спектр (HRMS, ESI), m/z: 444.1742 $[M + H]^+$. C₂₆H₂₅N₃O₂S. $[M + H]^+$ 444.1667.

3-Амино-4-(4-хлорфенил)-6,7-дигидро-5*Н***-циклопента**[*b*]**тиено**[**3,2-***e*]**пиридин-2-карбоксамид (6b).** Выход 2.3 г (67%), желтый порошок, т.пл. 288–290°С (ВиОН), при 200°С сублимируется. ИК спектр, v, см $^{-1}$: 3288–3445 (NH $_2$), 1666 (СОNН), 1639 (δ NH $_2$). Спектр ЯМР 1 Н, δ , м.д.: 2.11–2.24 м (2H, CH $_2$), 2.72 т (2H, CH $_2$, J 7.5 Гц), 3.18 т (2H, CH $_2$, J 7.7 Гц), 5.34 уш.с (2H, NH $_2$), 5.76 уш.с (2H, NH $_2$), 7.32 д (2H $_{\rm аром}$, J 8.3 Гц), 7.53 д (2H $_{\rm аром}$, J 8.3 Гц). Спектр ЯМР 13 С, δ , м.д.: 23.2, 29.2, 34.4, 97.9, 120.6, 129.3 (2C), 130.6 (2C), 133.2, 134.1, 134.3, 141.0, 146.1, 158.4, 167.0, 167.4. Масс-спектр (HRMS, ESI), m/z: 344.0634 [M + H] $^+$. С $_{17}$ H $_{14}$ CIN $_3$ OS. [M + H] $^+$ 344.0546.

Этил-3-амино-4-(4-изопропилфенил)-6,7-дигидро-5H-циклопента[b]тиено[3,2-e]пиридин-2-карбоксилат (6c). Выход 2.9 г (75%), желтый порошок, при УФ-облучении флуоресцирует, т.пл. 164–166°C (EtOH). ИК спектр (КВг), v, см $^{-1}$:

3483, 3355, 2959 (NH₂), 1671 (C=O), 1605 (δ NH₂). Спектр ЯМР 1 H, δ , м.д.: 1.22–1.27 м (9H, 2Me + MeCH₂), 1.98–2.22 м (2H, C⁶H₂), 2.59 т (2H, CH₂, J 7.3 Гц), 2.84–3.02 м (3H, CHMe₂ + CH₂), 4.18 к (2H, OCH₂, J 7.1 Гц), 5.60 уш.с (2H, NH₂), 7.28 д (2H_{аром}, J 8.2 Гц), 7.42 д (2H_{аром}, J 8.2 Гц). Спектр ЯМР 13 С, δ , м.д.: 14.9, 23.1, 24.1 (2C), 29.3, 33.7, 34.5, 60.4, 94.3, 120.1, 127.4 (2C), 128.5 (2C), 132.6, 133.4, 142.8, 148.2, 149.6, 159.9, 164.9, 168.1. Масс-спектр (HRMS, ESI), m/z: 381.1643 [M + H] $^+$. C_{22} H₂₄N₂O₂S. [M + H] $^+$ 381.1558.

7,7-Диметил-4-(2-нитрофенил)-5-оксо-2-(циклогекс-2-ен-1-илтио)-1,4,5,6,7,8-гексагидрохинолин-3-карбонитрил (9). К раствору 1.51 г (10 ммоль) *о*-нитробензальдегида **1f** в 20 мл этанола при 20°C при перемешивании прибавляли 1.0 г (10 ммоль) цианотиоацетамида 2 и 1 каплю пиперидина, перемешивали 30 мин и последовательно прибавляли 1.4 г (10 ммоль) димедона 7 и 1.0 мл (10 ммоль) пиперидина. Затем реакционную смесь перемешивали 4 ч и прибавляли 1.2 мл (10 ммоль) 3-бромциклогекс-1-ена 4f, после чего оставляли на 24 ч, после чего при перемешивании разбавляли равным объемом воды и отфильтровывали образовавшийся осадок. Промывали водой, этанолом и гексаном. Выход 3.4 г (79%), желтый порошок, т.пл. 190–192°С (*i*-BuOH). ИК спектр, у, см⁻¹: 3310 (NH), 2205 (C≡N), 1698 (C=O). Спектр ЯМР ¹H, δ, м.д.: 0.51 c (3H, Me), 0.75 c (3H, Me), 1.52–2.20 м [8H, (CH₂)₃], 2.26 д (1H, CH₂CO, ²J 16.4 Гц), 2.29 д (1H, CH₂CO, ²J 16.4 Гц), 4.17–4.23 м (1H, SCH), 5.24 с ($1H_{xинолина}^4$), 5.53-5.72 м (1H, CH=), 5.77-5.89 M (1H, =CH), 7.28-7.46 M (2H_{apom}), 7.65 т ($1H_{apom}$, J 7.4 Γ ц), 7.78 д ($1H_{apom}$, J 9.2 Γ ц), 9.89 уш.с (ÎH, NH). Спектр ЯМР ¹³С, δ, м.д.: 18.3, 19.1, 26.2, 26.7, 29.3, 35.5 (2C), 34.6, 44.0, 50.0, 93.4, 108.6, 118.6, 124.0, 125.0, 128.6, 131.0, 133.2, 134.1, 139.7, 144.1, 148.3, 150.7, 194.8. Масс-спектр (HRMS, ESI), m/z: 434.1542 $[M-H]^+$. $C_{24}H_{25}N_3O_3S$. $[M-H]^+$ 434.1617.

3-Амино-7,7-диметил-5-оксо-N-(хино-лин-8-ил)-4-(4-хлорфенил)-4,5,6,7,8,9-гексагид-ротиено[2,3-b]хинолин-2-карбоксамид (10). К перемешиваемой смеси $1.4 \, \Gamma (10 \, \text{ммоль}) \, n$ -хлорбен-зальдегида 1c и $1.0 \, (10 \, \text{ммоль})$ цианотиоацетамида $2 \, \text{в} \, 20 \, \text{мл}$ абсолютного этанола при 20°C прибавляли $1 \, \text{каплю}$ пиперидина, перемешивали $30 \, \text{мин}$

и последовательно прибавляли 1.4 г (10 ммоль) димедона 7 и 1.0 мл (10 ммоль) пиперидина. Затем реакционную смесь продолжали перемешивать 2 ч, после чего прибавляли 2.21 г (10 ммоль) α-хлор-N-(хинолин-8-ил)ацетамида 4f, перемешивали 2 ч и прибавляли раствор, приготовленный из 0.23 г Na и 20 мл абсолютного этанола, перемешивали 1 ч и оставляли. Через 24 ч реакционную смесь при перемешивании разбавляли равным объемом воды и отфильтровывали образовавшийся осадок. Промывали водой, этанолом и гексаном. Выход 4.1 г (80%), желтые кристаллы, т.пл. 285–287°С (ВиОН), [13] – 285–287°С.

6-Бром-7,7-диметил-2-метилтио-5-оксо-4фенил-5,6,7,8-тетрагидрохинолин-3-карбонитрил (11). К раствору 1 мл (10 ммоль) бензальдегида 1e в 20 мл этанола при 20°C при перемешивании прибавляли 1.0 (10 ммоль) цианотиоацетамида 2 1 каплю пиперидина, перемешивали 30 мин, прибавляли 1.4 г (10 ммоль) димедона 7 и 1.0 мл (10 ммоль) пиперидина, перемешивали 2 ч и прибавляли 0.62 мл (10 ммоль) метилиодида 4е. Затем реакционную смесь перемешивали 1 ч и оставляли. Через 24 ч разбавляли равным объемом воды и отфильтровывали образовавшийся осадок, промывали водой, этанолом и гексаном. Полученный продукт растворяли в 20 мл ДМФА и при облучении реакционной смеси лампой на 500 Вт прикапывали при перемешивании 0.51 мл (10 ммоль) брома со скоростью обесцвечивания раствора, на что понадобилось 15 мин. Затем смесь перемешивали 1 ч, разбавляли равным объемом воды и отфильтровывали образовавшийся осадок. Выход 3.2 г (79%), желтый порошок, т.пл. 100-102°С (AcOH). ИК спектр, v, см⁻¹: 2225 (С≡N), 1698 (С=О). Спектр ЯМР ¹Н, б, м.д.: 1.15 с (3H, Me), 1.16 c (3H, Me), 2.67 c (3H, SMe), 3.15 д $(1H, H^8, {}^2J 18.5 \Gamma \mu), 3.23 д (1H, H^8, {}^2J 18.5 \Gamma \mu), 4.70$ $c (1H, H^6)$, 7.15 д $(1H_{apom}, J7.0 \Gamma \mu)$, 7.40 т $(1H_{apom}, J7.0 \Gamma \mu)$ J 7.0 Гц), 7.42–7.51 м (3H_{аром}). Масс-спектр, m/z $(I_{\text{OTH}}, \%)$: 402.1 (100) $[M + 1]^+$. $C_{19}H_{17}BrN_2OS$. M401.3.

2-(2-Амино-7,7-диметил-5-оксо-4-фенетил-3-циано-5,6,7,8-тетрагидро-4*H*-хромен-6-ил)-*N*-(4-бромфенил)ацетамид (13). К перемешиваемой смеси 1.4 мл (10 ммоль) гидроциннамальдегида 1g и 0.66 г (10 ммоль) малононитрила в 25 мл этанола при 20°С прибавляли 1 каплю пиперидина, пере-

мешивали 1 ч и прибавляли 1.4 г (10 ммоль) димедона 7, после чего продолжали перемешивание в течение 2 ч. Затем к перемешиваемой реакционной смеси последовательно прибавляли 5.6 мл (10 ммоль) 10%-ного водного раствора КОН, 10 мл ДМФА и 2.21 г (10 ммоль) алкилирующего реагента 4f, перемешивали 2 ч и оставляли. Через 24 ч смесь разбавляли равным объемом воды и отфильтровывали образовавшийся осадок. Промывали водой, этанолом и гексаном. Выход 3.8 г (72%), желтые кристаллы, т.пл. 155–157°С (BuOH). ИК спектр, v, см⁻¹: 3425, 3307, 3264, 3187 (NH, NH₂), 2182 (C≡N), 1656 (C=O), 1605 (CONH), 1550 (δNH₂). Спектр ЯМР ¹Н, δ, м.д.: 1.01 с (6H, 2Me). 1.55–1.82 м (2H. CH₂), 2.12 д (1H. H⁸, ^{2}J 11.9 Γ ц), 2.24 д (1 H^{8} , ^{2}J 11.9 Γ ц), 2.26–2.49 м [5H, $1H^6 + (CH_2)_2$], 3.27 ym.c (1H, $H^4_{\text{пирана}}$), 4.25 c (2H, СОСН₂), 6.96 уш.с (2H, NH₂), 7.09–7.28 м (5H, Ph), 7.40 д ($2H_{apom}$, J 6.6 Γ ц), 7.56 д (2H, H_{apom} , J6.6 Гц), 10.41 уш.с (1H, NHCO). Спектр ЯМР ¹³С, б, м.д.: 27.5, 28.7, 29.8, 31.6, 32.1, 36.6, 44.0, 50.6, 55.7, 112.8, 116.0, 120.6, 121.8 (2C), 126.1 (2C), 128.5 (2C), 128.8 (2C), 132.1 (2C), 138.3, 142.2, 160.5, 163.7, 165.3, 196.8. Масс-спектр, m/z ($I_{\text{отн}}$) %): 535.1 (100) $[M+1]^+$. $C_{28}H_{28}BrN_3O_3$. M 534.4.

2-Амино-6-бензилиден-5-оксо-4-(циклогекс-3-ен-1-ил)-5,6,7,8-тетрагидро-4*H*-хромен-3-карбонитрил (15). К перемешиваемой смеси 1.2 мл (10 ммоль) 3-циклогексен-1-карбоксальдегида 1h и 0.66 г (10 ммоль) малононитрила 12 в 20 мл этанола при 20°C прибавляли 1 каплю пиперидина, перемешивали 1 ч, после чего прибавляли 1.12 г (10 ммоль) циклогексан-1,3-диона 14 и перемешивали 2 ч. Затем к реакционной смеси последовательно прибавляли раствор, приготовленный из 0.23 г На и 20 мл абсолютного этанола и 1.0 мг (10 ммоль) бензальдегида 1е, перемешивали 1 ч и оставляли. Через 24 ч смесь разбавляли равным объемом воды и отфильтровывали образовавшийся осадок. Промывали водой, этанолом и гексаном. Выход 2.9 г (80%), бесцветные кристаллы, т.пл. 224–226°С (EtOH). ИК спектр, v, см⁻¹: 3404, 3315, 3210 (NH₂), 2198 (C≡N), 1687 (C=O), 1635 (δNH₂). Спектр $\bar{\rm ЯМР}^{-1}{\rm H}$, δ , м.д.: 0.82–1.11 м (1 ${\rm H}_{\rm алиф}$), 1.33-1.42 м ($1H_{\text{алиф}}$), 1.46-1.71 ($3H_{\text{алиф}}$), 1.76- $2.02~{\rm M}~(3{\rm H}_{\rm алиф}),~2.19{-}2.32~{\rm M}~(2{\rm H}_{\rm алиф}),~2.54{-}2.61~{\rm M}$ $(1H_{\text{алиф}})$, $3.14 \, \text{д} \, (1H, H_{\text{пирана}}^4, J \, 13.4 \, \Gamma \text{ц})$, $4.17 \, \text{c} \, (1H, H_{\text{пирана}}^4, J \, 13.4 \, \Gamma \text{ц})$, $4.17 \, \text{c} \, (1H, H_{\text{пирана}}^4, J \, 13.4 \, \Gamma \text{ц})$ PhCH=), 5.58 ym.c (2H, CH=CH), 6.97 ym.c (3H,

 $1{
m H}_{
m apom}$ + NH2), 7.13–7.22 м (2H_{аpom}), 7.24 т (2H_{аpom}, J 7.3 Гц). Спектр ЯМР $^{13}{
m C}$, δ , м.д.: 19.8, 22.3, 26.4, 27.1, 33.2, 35.7, 36.9, 52.7, 58.2, 113.8, 119.9, 122.4, 126.2, 126.7 (2C), 128.4 (2C), 144.8, 158.5, 161.2, 164.5, 165.8, 196.4. Масс-спектр (HRMS, ESI), m/z: 357.1721 $[M-{
m H}]^+$. ${
m C}_{23}{
m H}_{22}{
m N}_2{
m O}_2$. $[M-{
m H}]^+$ 357.1681.

2-Амино-4,4,7,7-тетраметил-5-оксо-6-(4этоксибензилиден)-5,6,7,8-тетрагидро-4*H*-хромен-3-карбонитрил (18). К перемешиваемой смеси 1.53 г (10 ммоль) изопропилиденмалононитрила 16 и 1.4 г (10 ммоль) димедона 7 в 15 мл ДМФА прибавляли 1 каплю Et₃N, перемешивали 2 ч и прибавляли 5.6 мл (10 ммоль) 10%-ного водного раствора КОН и 1 мл (10 ммоль) бензальдегида 1е, перемешивали 1 ч и оставляли. Через 24 ч смесь разбавляли равным объемом воды и отфильтровывали образовавшийся осадок, промывали водой, этанолом и гексаном. Выход 2.7 г (70%), бесцветные кристаллы, т.пл. 215-217°С (EtOH). ИК спектр, v, см⁻¹: 3387, 3319, 3210 (NH₂), 2192 (C≡N), 1687 (C=O), 1657 (δ NH₂). Спектр ЯМР ¹H, δ, м.д.: 0.93 с (3H, Me), 1.02 с (3H, Me), 1.28 т (3H, $MeCH_2$, J 7.0 Γ ц), 2.06 д (1H, H⁸, 2J 16.1 Γ ц), 2.22 д (1H, H⁸, ${}^{2}J$ 16.1 Гц), 3.95 к (2H, CH₂O, J 7.0 Гц), 4.09 с (1H, CH=), 6.80 д (2 H_{apom} , J 6.8 Γ ц), 6.95 уш.с (2H, NH₂), 7.01 д (2H_{аром}, J 6.8 Гц).Спектр ЯМР ¹³С, б, м.д.: 14.8 (2С), 26.8, 28.4, 31.8, 34.8, 50.0, 58.6, 62.9, 113.0, 114.1 (2C), 120.0, 128.2 (2C), 136.7, 151.9, 157.2, 158.5, 159.2, 162.2, 174.3, 195.8. Macc-спектр (HRMS, ESI), m/z: 377.2591 [M-H]⁺. $C_{23}H_{26}N_2O_3$. $[M-H]^+$ 377.1943.

ЗАКЛЮЧЕНИЕ

Многокомпонентная конденсация альдегидов, СН-кислот, енаминов и алкилирующих реагентов протекает в мягких условиях и позволяет синтезировать перспективные циклоалка[b]пиридины и пираны.

4-Этоксибензилиденцианоуксусный эфир взаимодействует в условиях реакции Михаэля по типу обмена метиленовыми компонентами.

Замещенные 5,6,7,8-тетрагидро-4*H*-хромены бромируются и алкилируются и конденсируются по положению 6.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации [проект № 075-03-2020-223 (FSSF-2020-0017)].

ИНФОРМАЦИЯ ОБ АВТОРАХ

Дяченко Иван Владимирович, ORCID: https://orcid/org/0000-0001-7255-3446

Дяченко Владимир Данилович, ORCID: https://orcid/org/0000-0002-0993-4091

Хрусталев Виктор Николаевич, ORCID: https://orcid/org/0000-0001-8806-2975

Ненайденко Валентин Георгиевич, ORCID: https://orcid/org/0000-0001-9162-5169

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Старосила С.А., Протопопов М.В., Дяченко І.В., Баланда А.О., Дяченко В.Д., Ярмолюк С.М. *Ukr. Bioorg. Acta.* **2013**, 32–37.
- Fugel W., Oberholser A.E., Gschloessl B., Dzikowski R., Presaburger N., Preu L., Pearl L.H., Baratte B., Ratin M., Okun I., Doerig Ch., Kruggel S., Lemcke T., Meijer L., Kunick C. *J. Med. Chem.* 2013, *56*, 264–275. doi 10.1021/jm301575n
- 3. Eurtivong C., Semenov V., Semenova M., Konyushkin L., Atamanenko O., Reynisson J., Kiselyov A. *Bioorg. Med. Chem.* **2017**, *25*, 658–664. doi 10.1016/j.bmc.2016.11.041
- 4. Смирнова Т.А., Гаврилов М.Ю., Василюк М.В., Закс А.С., Коньшин М.Е. Пат. 2154061 (**1999**). РФ. *РЖХим.* **2000**, 00.22-19O.63П.
- Stoltefub J., Löger S.M., Schmidt G., Brandes A., Schmeck C., Bremm K.-D., Bischoff H., Schmidt D. Заявка 19741051A1 (1999). Германия. РЖХим. 2000, 00.22-04O.73П.
- 6. Nesaragi A.R., Kamble R.R., Hoolageri S.R., Mavazzan A., Madar S.F., Anand A., Joshi S.D. *Appl. Organomet. Chem.* **2021**, *10*, 1–21. doi 10.1002/aoc.6469
- Nakhi A., Rahman M.S., Archana S., Kishore R., Seerapu G.P.K., Kumar K.L., Halofar D., Pal M. *Bioorg. Med. Chem. Lett.* 2013, 23, 4195–4205. doi 10.1016/j.bmcl.2013.05.014
- Erichsen M.N., Huynh T.H., Abrahamsen B., Bastlund J.F., Bundgaard C., Monrad O., Bekker-Jensen A., Nielsen C.W., Frydenvang K., Jensen A.A., Bunch L. J. Med. Chem. 2010, 53, 7180–7191. doi 10.1021/jm1009154

- Дяченко И.В., Дяченко В.Д., Дороватовский П.В., Хрусталев В.Н., Ненайденко В.Г. ХГС. 2019, 55, 839–843. [Dyachenko I.V., Dyachenko V.D., Dorovatovskii P.V., Khrustalev V.N., Nenajdenko V.G. Chem. Heterocycl. Compd. 2019, 55, 839–843.] doi 10.1007/s10593-019-02546-x
- 10. Дяченко В.Д. Укр. хим. ж. 2006, 72, 116-120.
- 11. Дяченко В.Д., Чернега А.Н. ХГС. 2005, 41, 1053–1059. [Dyachenko V.D., Chernega A.N. *Chem. Heterocycl Compd.* **2005**, *41*, 890–895.] doi 10.1007/s10593-005-0244-y
- 12. Дяченко В.Д., Дяченко А.Д. ЖОрХ. **2007**, 43, 286–291. [Dyachenko V.D., Dyachenko A.D. Russ. J. Org. Chem. **2007**, 43, 280–285.] doi 10.1134/S1070428007020212
- 13. Дяченко И.В., Калашник И.Н., Дяченко В.Д., Дороватовский П.В., Хрусталев В.Н., Ненайденко В.Г. ЖОрХ. 2019, 55, 1273–1286. [Dyachenko I.V., Kalashnik I.N.; Dyachenko V.D., Dorovatovskii P.V., Khrustalev V.N., Nenajdenko V.G. Russ. J. Org. Chem. 2019, 55, 1177–1188.] doi 10.1134/S1070428019080177
- 14. Дяченко И.В., Дяченко В.Д., Дороватовский П.В., Хрусталев В.Н., Ненайденко В.Г. *ЖОрХ*. **2019**, 55, 266–278. [Dyachenko I.V., Dyachenko V.D., Dorovatovskii P.V., Khrustalev V.N., Nenajdenko V.G. *Russ. J. Org. Chem.* **2019**, 55, 215–226.] doi 10.1134/ S1070428019020131
- 15. Дяченко В.Д. *ЖОХ*. **2006**, *76*, 299–308. [Dyachenko V.D. *Russ. J. Gen. Chem.* **2006**, *76*, 282–291.] doi 10.1134/S1070363206020216

- Stork G., Brizzolara A., Landesman H., Szmuszkovicz J., Terrell R. J. Am. Chem. Soc. 1963, 85, 207–222. doi 10.1021/ja00885a021
- Rappoport Z., Ladkani D. J. Chem. Soc. Perkin Trans.
 1. 1974, 22, 2595–2601. doi 10.1039/P19740002595
- 18. Дяченко В.Д., Дяченко А.Д., Чернега А.Н. *ЖОрХ*. **2004**, *40*, 424–433. [Dyachenko V.D., Dyachenko A.D., Chernega A.N. *Russ. J. Org. Chem.* **2004**, *40*, 397–406.] doi 10.1023/B:RUJO.0000034978.81993.bd
- Dyachenko V.D., Krivokolysko S.G., Litvinov V.P. Mendeleev. Commun. 1998, 1, 23–24.
- 20. Дяченко И.В., Рамазанова Е.Ю., Дяченко В.Д. *ЖОрХ*. **2014**, *50*, 1839–1843. [Dyachenko I.V., Ramazanova E.Yu., Dyachenko V.D. *Russ. J. Org. Chem.* **2014**, *50*, 1821–1825.] doi 10.1134/S1070428014120185
- 21. Bruker, SAINT, Bruker AXS Inc., Madison, WI, 2013.
- SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M., Stalke D. J. Appl. Crystallogr. 2015, 48, 3–10.
- Battye T.G.G., Kontogiannis L., Johnson O., Powell H.R., Leslie A.G.W. *Acta Crystallogr., Sect. D.* 2011, 67, 271–281. doi 10.1107/s0907444910048675
- 24. Evans P. *Acta Crystallogr., Sect. D.* **2006**, *62*, 72–82. doi 10.1107/s0907444905036693
- 25. Sheldrick G.M. *Acta Crystallogr., Sect. C.* **2015**, *71*, 3–8. doi 10.1107/S2053229614024218

Multicomponent Synthesis of Cycloalca[b]pyridines and Pyrans

I. V. Dyachenko^a, V. D. Dyachenko^a, P. V. Dorovatovskii^b, V. N. Khrustalev^c, d, and V. G. Nenajdenko^e, *

a Lugansk State Pedagogical University, ul. Oboronnaya, 2, Lugansk, 91011 Ukraine
b National Research Center "Kurchatov Institute", pl. Acad. Kurchatova, 1, Moscow, 123182 Russia
c Peoples' Friendship University of Russia (RUDN University), ul. Miklukho-Maklaya, 6, Moscow, 117198 Russia
d Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp., 47, Moscow, 119991 Russia
e Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119991 Russia
*e-mail: nenajdenko@gmail.com

Received August 13, 2022; revised August 27, 2022; accepted August 28, 2022

New condensed pyridines and pyrans were synthesized using multicomponent condensation. A number of compounds was studied by X-ray structural analysis.

Keywords: pyridine, pyran, multicomponent condensation, Michael reaction, Knoevenagel, transamination, alkylation, X-ray