Пробиотические свойства сахаромицетов (обзор)

Обложка

Цитировать

Полный текст

Аннотация

Цель обзора – обобщение и анализ информации о молекулярно-генетических основах и методах исследования пробиотической активности грибов класса Saccharomycetes, механизмах их физиологического действия и применении в биотехнологии. В настоящее время эффективность Saccharomyces boulardii при лечении и для профилактики диарей различной этиологии, рецидивов инфекции Clostridium difficile, побочных эффектов терапии инфекции Helicobacter pylori установлена с высоким уровнем доказательности. Генетические, цитологические, культуральные и биохимические особенности S. boulardii определяют их пробиотическую активность. Другие штаммы сахаромицетов с пробиотическим потенциалом чаще всего выделяют из национальных ферментированных продуктов из растительного и молочного сырья. Единая методика исследования пробиотических свойств пока не создана, для их подтверждения необходимы клинические испытания с участием людей. Перспективными пробиотиками являются штаммы видов Saccharomyces cerevisiae и Kluyveromyces marxianus, имеющих международный статус безопасности. Возможные механизмы физиологического действия сахаромицетов включают антимикробные, антитоксические, трофические, антисекреторные и противовоспалительные эффекты. Некоторые механизмы пробиотического действия дрожжей отличаются от бактериальных и не все они пока понятны. Сахаромицеты-пробиотики могут быть использованы для повышения биологической ценности, качества и безопасности пищевых продуктов.

Об авторах

С. А. Рябцева

Северо-Кавказский федеральный университет

Автор, ответственный за переписку.
Email: ryabtseva07@mail.ru
Россия, 355017, Ставрополь

А. Г. Храмцов

Северо-Кавказский федеральный университет

Email: ryabtseva07@mail.ru
Россия, 355017, Ставрополь

С. Н. Сазанова

Северо-Кавказский федеральный университет

Email: ryabtseva07@mail.ru
Россия, 355017, Ставрополь

Р. О. Будкевич

Северо-Кавказский федеральный университет

Email: ryabtseva07@mail.ru
Россия, 355017, Ставрополь

Н. М Федорцов

Северо-Кавказский федеральный университет

Email: ryabtseva07@mail.ru
Россия, 355017, Ставрополь

А. А. Везирян

Северо-Кавказский федеральный университет

Email: ryabtseva07@mail.ru
Россия, 355017, Ставрополь

Список литературы

  1. Nielsen J. // Biotechnol J. 2019. V. 14. № 3. https://doi.org/10.1002/biot.201800421
  2. Hatoum R., Labrie S., Fliss I. // Front Microbiol. 2012. V. 19. № 3. doi.org/ .2012.00421https://doi.org/10.3389/fmicb
  3. Staniszewski A., Kordowska-Wiater M. // Foods. 2021. V. 10. № 6. https://doi.org/10.3390/foods10061306
  4. Vemuri R., Shankar E.M., Chieppa M., Eri R., Kavanagh K. // Microorganisms. 2020. V. 8. № 4. https://doi.org/10.3390/microorganisms8040483
  5. Nash A.K., Auchtung T.A., Wong M.C., Smith D.P., Gesell J.R., Ross M.C., et al. // Microbiome. 2017. V. 5. № 1. https://doi.org/10.1186/s40168-017-0373-4
  6. Hill C., Guarner F., Reid G., Gibson G.R. et al. // Nature Reviews Gastroenterology & Hepatology. 2014. V. 11. P. 506–514.
  7. Рябцева С.А., Сазанова С.Н., Дубинина А.А. // Современная наука и инновации. 2019. № 2(26). С. 138–151.
  8. Pais P., Almeida V., Yılmaz M., Teixeira M.C. // J Fungi (Basel). 2020. V. 6. № 2. P. 78. https://doi.org/10.3390/jof6020078
  9. Lazo-Vélez M.A., Serna-Saldívar S.O., Rosales-Medina M.F., Tinoco-Alvear M., Briones-García M. // A review. J. Appl. Microbiol. 2018. V. 125. P. 943–951.
  10. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 5: suitability of taxonomic units notified to EFSA until September 2016 // EFSA Journal. 2017. V. 15. P. 4366.https://doi.org/10.2903/j.efsa.2017.4663
  11. McFarland L.V. // World J Gastroenterol. 2010. V. 16. № 18. P. 2202–2222.https://doi.org/10.3748/wjg.v16.i18.2202
  12. McFarland L., Bernasconi P. // Microbial Ecology in Health and Disease. 1993. V. 6. P. 157–171.
  13. McCullough M.J., Clemons K.V., McCusker J.H., Stevens D.A. // J. Clin. Microbiol. 1998. V. 36. P. 2613–2617. https://doi.org/10.1128/JCM.36.9.2613-2617.1998
  14. Czerucka D., Piche T., Rampal P. // Aliment. Pharmacol. Ther. 2007. V. 26. P. 767–778.
  15. McFarland L.V. // A Meta-analysis and Systematic Review. Antibiotics (Basel). 2015. V. 13. P. 160–78.
  16. Szajewska H., Horvath A., Kołodziej M. // Aliment Pharmacol Ther. 2015. V. 41. № 12. P.1237–45.
  17. Szajewska H., Kołodziej M. // Aliment Pharmacol Ther. 2015. V. 42. № 7. P. 793–801.
  18. Moré M.I., Vandenplas Y. // Clin Med Insights Gastroenterol. 2018. V. 11.https://doi.org/10.1177/1179552217752679
  19. Kaźmierczak-Siedlecka K., Ruszkowski J., Fic M., Folwarski M., Makarewicz W. // Curr. Microbiol. 2020. V. 77. № 9. P. 1987–1996.https://doi.org/10.1007/s00284-020-02053-9
  20. Li Z., Zhu G., Li C., Lai H., Liu X., Zhang L. // Nutrients. 2021. V. 13. № 12. P. 4319.https://doi.org/10.3390/nu13124319
  21. Кайбышева В.О., Никонов Е.Л. Пробиотики с позиции доказательной медицины // Доказательная гастроэнтерология. 2019. № 8(3). С. 45–54. doi.org/https://doi.org/10.17116/dokgastro2019803145
  22. Mitterdorfer G., Mayer H.K., Kneifel W., Viernstein H. // J. Appl. Microbiol. 2002. V. 93. P. 521–530.
  23. Fietto J.L., Araújo R.S., Valadão F.N., Fietto L.G., Brandão R.L., Neves M.J. et al. // Can. J. Microbiol. 2004. V. 50. P. 615–621.
  24. Edwards-Ingram L., Gitsham P., Burton N., Warhurst G., Clarke I., Hoyle D. et al. // Appl. Environ. Microbiol. 2007. V. 73. P. 2458–2467.
  25. Liu Y., Wu Q., Wu X., Algharib S. A., Gong F., Hu J. et al. // Int. J. Biol. Macromol. 2021. V. 173. P. 445–456. https://doi.org/10.1016/j.ijbiomac.2021.01.125
  26. Fortin O., Aguilar-Uscanga B., Vu K.D., Salmieri S., Lacroix M. // Nutr. Cancer. 2018. V. 70. № 1. P. 83–96. https://doi.org/10.1080/01635581.2018.1380204
  27. Rajkowska K., Kunicka–Styczyńska A. // Biotechnology & Biotechnological Equipment. 2009. V. 23. P. 662–665.
  28. Fernández-Pacheco P., Pintado C., Briones Pérez A., Arévalo-Villena M. J. // Fungi (Basel). 2021. V. 7. № 3. P. 177. https://doi.org/10.3390/jof7030177
  29. Datta S., Timson D.J., Annapure U.S. // J Sci Food Agric. 2017. V. 97. № 9. P. 3039–3049.https://doi.org/10.1002/jsfa.8147
  30. Offei B., Vandecruys P., De Graeve S., Foulquié-Moreno M.R., Thevelein J.M. // Genome Res. 2019. V. 9. P. 1478–1494. https://doi.org/10.1101/gr.243147.118
  31. Khatri I., Tomar R., Ganesan K., Prasad G.S., Subramanian S. // Sci. Rep. 2017. V. 7. № 1. P. 371–385.
  32. Pais P., Oliveira J., Almeida V., Yilmaz M., Monteiro P.T., Teixeira M.C. // Genomics. 2021. V. 113. P. 530–539.
  33. Fernandez-Pacheco P., Arévalo-Villena M., Rosa I.Z., Briones Pérez A. // Food Res. Int. 2018. V. 112. P. 143–151. https://doi.org/10.1016/j.foodres.2018.06.008
  34. Fernández-Pacheco P., Arévalo-Villena M., Bevilacqua A., Corbo M.R., Briones A. // LWT Food Sci Technol. 2018. V. 97. P. 332–340.https://doi.org/10.1016/j.lwt.2018
  35. Fernández-Pacheco P., Ramos Monge I.M., Fernández-González M., Poveda Colado J.M., Arévalo-Villena M. // Front. Nutr. 2021. V. 8.https://doi.org/10.3389/fnut.2021.659328
  36. Fernández-Pacheco P., García-Béjar B., Jiménez-Del Castillo M., Carreño-Domínguez J., Briones Pérez A., Arévalo-Villena M.J. // Sci. Food Agric. 2021. V. 101. № 6. P. 2201–2209. https://doi.org/10.1002/jsfa.10839
  37. Fernández-Pacheco P., Rosa I.Z., Arévalo-Villena M., Gomes E., Pérez A.B. // Braz. J. Microbiol. 2021. V. 52. № 4. P. 2129–2144. https://doi.org/10.1007/s42770-021-00541-z
  38. Simões L.A., Cristina de Souza A., Ferreira I., Melo D.S., Lopes L.A.A., Magnani M. et al. // J. Appl. Microbiol. 2021. V. 131. № 4. P. 1983–1997. https://doi.org/10.1111/jam.15065
  39. Reyes-Becerril M., Alamillo E., Angulo C. // Probiotics Antimicrob Proteins. 2021. V. 13. № 5. P. 1292–1305. https://doi.org/10.1007/s12602-021-09769-5
  40. Palla M., Blandino M., Grassi A., Giordano D., Sgherri C., Quartacci M.F. et al. // Sci. Rep. 2020. V. 10. P. 12856.
  41. Palla M., Conte G., Grassi A., Esin S., Serra A., Mele M. et al. // Foods. 2021. V. 10. № 9. P. 2087.
  42. Okada Y., Tsuzuki Y., Sugihara N., Nishii S., Shibuya N., Mizoguchi A. et al. // J. Gastroenterol. 2021. V. 56. № 9. P. 829–842. https://doi.org/10.1007/s00535-021-01804-0
  43. Chelliah R., Kim E.J., Daliri E.B., Antony U., Oh D.H. // Foods. 2021. V. 10. № 6. P. 1428. https://doi.org/10.3390/foods10061428
  44. Pereira R.P., Jadhav R, Baghela A., Barretto D.A. // Probiotics Antimicrob Proteins. 2021. V. 13. № 3. P. 796–808. https://doi.org/10.1007/s12602-020-09734-8
  45. Zahoor F., Sooklim C., Songdech P., Duangpakdee O., Soontorngun N.S // Metabolites. 2021. V. 11. № 5. P. 312. https://doi.org/10.3390/metabo11050312
  46. Li S., Zhang Y., Yin P., Zhang K., Liu Y., Gao Y. et al. // J Dairy Sci. 2021. V. 104. № 6. P. 6559–6576. https://doi.org/10.3168/jds.2020-19845
  47. Hsiung R.T., Fang W.T., LePage B.A., Hsu S.A., Hsu C.H., Chou J.Y. // Probiotics Antimicrob Proteins. 2021. V. 13. № 1. P. 113–124. https://doi.org/10.1007/s12602-020-09661-8
  48. Nag D., Goel A., Padwad Y., Singh D. // Probiotics Antimicrob. Proteins. 2022. V. 18. https://doi.org/10.1007/s12602-021-09874-5
  49. Youn H.Y., Kim D.H., Kim H.J., Jang Y.S., Song K.Y., Bae D. et al // Probiotics Antimicrob. Proteins. 2022. https://doi.org/10.1007/s12602-021-09872-7
  50. Parafati L., Palmeri R., Pitino I., Restuccia C. // Food Microbiol. 2022. V. 103. P. 103950. https://doi.org/10.1016/j.fm.2021.103950
  51. Czerucka D., Rampal P. // World J. Gastroenterol. 2019. V. 25. № 18. P. 2188–2203. https://doi.org/10.3748/wjg.v25.i18.2188
  52. Наумова Е.С., Садыкова А.Ж., Михайлова Ю.В., Наумов Г.И. Полиморфизм лактозных генов молочных дрожжей Kluyveromyces marxianus, потенциальных пробиотических микроорганизмов. // Микробиология. 2017. Т. 86. № 3. С. 335–343.
  53. Голубев В.И. Микоцинотипирование // Микология и фитопатология. 2012. Т. 46. № 1. С. 3–13.
  54. Nascimento B.L., Delabeneta M.F., Rosseto L.R.B., Junges D.S.B., Paris A.P., Persel C. et al. // FEMS Yeast Research. 2020. V. 20. № 3.https://doi.org/10.1093/femsyr/foaa016
  55. Roussel C., De Paepe K., Galia W., de Bodt J., Chalancon S., Denis S. et al. // Gut Microbes. 2021. V. 13. № 1. P. 1953246. https://doi.org/10.1080/19490976.2021.1953246
  56. Gut A.M., Vasiljevic T., Yeager T., Donkor O.N. // Saudi J. Biol. Sci. 2022. V. 29. № 1. P. 550–563. https://doi.org/10.1016/j.sjbs.2021.09.025
  57. Ansari F., Alian Samakkhah S., Bahadori A., Jafari S.M., Ziaee M., Khodayari M.T. et al. // Crit. Rev. Food Sci. Nutr. 2021. V. 13. P. 1–29. https://doi.org/10.1080/10408398.2021.1949577
  58. Swieca M., Kordowska-Wiater M., Pytka M., Gawlik-Dziki U., Seczyk L., Złotek U. et al. // LWT. 2019. V. 100. P. 220–226.
  59. Chan M.Z.A., Toh M., Liu S.Q. // Int. J. Food Microbiol. 2021. V. 4. P. 350–109229. https://doi.org/10.1016/j.ijfoodmicro.2021.109229
  60. Polanowska K., Varghese R., Kuligowski M., Majcher M. // J. Sci. Food Agric. 2021. V. 101. № 13. P. 5487–5497. https://doi.org/10.1002/jsfa.11197
  61. Senkarcinova B., Graça Dias I.A., Nespor J., Branyik T. // LWT. 2019. V. 100. P. 362–367.
  62. Sarwar A., Tariq A., Al-Dalali S., Zhao X., Zhang J., Jalal ud Din et al. // Foods. 2019. V. 8. P. 468.
  63. Andrade R.P.,Oliveira D.R., Alencar Lopes A.C., Abreu L.R., Duarte W.F. // Food Research International. 2019. V. 125. № 2019 https://doi.org/10.1016/j.foodres.2019.108620
  64. Poloni V.L., Bainotti M.B., Vergara L.D., Escobar F., Montenegro M., Cavaglieri L. // Curr. Res. Food Sci. 2021. V. 4. P. 132–140. https://doi.org/10.1016/j.crfs.2021.02.006

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (76KB)
3.

Скачать (99KB)

© С.А. Рябцева, А.Г. Храмцов, С.Н. Сазанова, Р.О. Будкевич, Н.М Федорцов, А.А. Везирян, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».