Зеленая стратегия биовыщелачивания труднорастворимых соединений неодима микроскопическими грибами

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В настоящее время активно разрабатываются экологически чистые процессы переработки сырья, содержащего редкоземельные элементы (РЗЭ). Микроорганизмы играют важную роль в биогеохимии РЗЭ, однако природа взаимодействия микромицетов с РЗЭ остается мало изученной . В исследовании изучается потенциал извлечения РЗЭ из их труднорастворимых форм с помощью микроскопических грибов. На примере почвенного микромицета Aspergillus niger показана возможность перевода трудно растворимого оксида неодима Nd2O3 в растворимые в воде и спиртах (этиловом и изопропиловом) соединения неодима. Морфология и структура клеток A. niger и распределение нерастворимых и растворимых форм редкоземельного элемента до и после биовыщелачивания изучались с помощью сканирующей электронной микроскопии (СЭМ). Биовыщелачивание микромицетом моделировали методом прямого контакта. Рентгенофлуоресцентный анализ экстрактов после биовыщелачивания показал присутствие неодима. Эти исследования помогут раскрыть потенциал микроскопических грибов для их применения в экологически чистой технологии извлечения РЗЭ, основанной на биовыщелачивании. Это может послужить основанием для разработки экологически чистой альтернативы применяемым в настоящее время методам, использующим сильные неорганические кислоты или токсичные вещества.

Об авторах

Д. В. Белов

Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова РАН

Email: bdv@ipfran.ru
Нижний Новгород, 603950 Россия

С. Н. Беляев

Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова РАН

Email: bdv@ipfran.ru
Нижний Новгород, 603950 Россия

Е. Н. Разов

Институт проблем машиностроения РАН – филиал ФГБНУ “Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова РАН

Email: bdv@ipfran.ru
Нижний Новгород, 603024 Россия

Н. А. Сороколетова

Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова РАН; Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: bdv@ipfran.ru
Нижний Новгород, 603950 Россия; Нижний Новгород, 603022 Россия

Е. И. Серебров

Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова РАН; Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: bdv@ipfran.ru
Нижний Новгород, 603950 Россия; Нижний Новгород, 603022 Россия

П. В. Мосягин

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Автор, ответственный за переписку.
Email: bdv@ipfran.ru
Нижний Новгород, 603022 Россия

Список литературы

  1. Forti V., Balde C. P., Kuehr R., Bel G . The Global E-waste Monitor 2020: Quantities, Flows and the Circular Economy Potential. UNU/UNITAR SCYCLE, ITU, 2020. 120 p.
  2. Liu K., Tan Q., Yu J. , Yu J ., Wanget M. // Circular Economy. 2023. V. 2. № 1. 100028. https://doi.org/10.1016/j.cec.2023.100028
  3. Santhiya D., Ting Y.P. // J. Biotechnol. 2005. V. 116. № 2. P. 171. https://doi.org/10.1016/j.jbiotec.2004.10.011
  4. Aung K.M.M., Ting Y.P. // J. Biotechnol. 2005. V. 116. № 2. P. 159. https://doi.org/10.1016/j.jbiotec.2004.10.008
  5. Santhiya D., Ting Y.P. // J. Biotechnol. 2006. V. 121. № 1. P. 62. https://doi.org/10.1016/j.jbiotec.2005.07.002
  6. Pathak A., Kothari R., Vinoba M., Habibi N., Tyagi V.V. // JEM. 2021. V. 280. P. 111789. https://doi.org/10.1016/j.jenvman.2020.111789
  7. Dusengemungu L., Kasali G., Gwanama C., Mubem- ba B. // Environ. Adv. 2021. V. 5. P. 100083. https://doi.org/10.1016/j.envadv.2021.100083
  8. Rasoulnia P., Mousavi S.M. // Bioresour. Technol. 2016. V. 216. P. 729. https://doi.org/10.1016/j.biortech.2016.05.114
  9. Bindschedler S., Bouquet T.Q.T.V., Job D., Edith J., Junier P. // Adv. Appl. Microbiol. 2017. V. 99. P. 53. https://doi.org/10.1016/bs.aambs.2017.02.002
  10. Burgstaller W., Schinner F. // J. Biotech. 1993. V. 27. № 2. P. 91. https://doi.org/10.1016/0168-1656(93)90101-R
  11. Wu H.Y., Ting Y.P. // Enzyme Microb. Technol. 2006. V. 38. № 6. P. 839. https://doi.org/10.1016/j.enzmictec.2005.08.012
  12. Mouna H.M., Baral S.S. // Hydrometallurgy. 2019. V. 184. P. 175. https://doi.org/10.1016/j.hydromet.2019.01.007
  13. Li J., Xiao Y., Feng X., Wang J., Ma Z., Yao R. et al. // J. Clean. Prod. 2024. V. 468. P. 143067. https://doi.org/10.1016/j.jclepro.2024.143067
  14. Hosseinzadeh F., Rastegar S.O., Ashengroph M. // Process Biochem. 2021. V. 105. P. 1. https://doi.org/10.1016/j.procbio.2021.03.022
  15. Ma J., Li S., Wang J., Jiang S. , Panchal B., Sun Y. // Fuel. 2023. V. 354. P. 129387. https://doi.org/10.1016/j.fuel.2023.129387
  16. Keekan K.K., Jalondhara J.C. // Int. J. 2017. V. 38. № 5. P. 312. https://doi.org/10.1080/08827508.2017.1350956
  17. Castro L., Blázquez M.L., González F., Muñ oz J.A. // Metals. 2020. V. 10. № 7. P. 978. https://doi.org/10.3390/met10070978
  18. Kang X., Csetenyi L., Gadd G.M. // Environ. Microbiol. 2021. V. 23. № 7. P. 3970. https://doi.org/10.1111/1462-2920.15402
  19. Osman Y., Gebreil A., Mowafy A.M., Anan T .I., Ha- med S.M. // World J. Microbiol. Biotechnol. 2019. V. 35. https://doi.org/10.1007/s11274-019-2666-1
  20. Никитин Д.А., Семенов М.В. // Микробиология. 2022. T. 91. № 1. https://doi.org/110.31857/S0026365622010098
  21. Билай В.И., Коваль Э .З. Аспергиллы. Определитель. Киев: Наукова Думка, 1988. 203 с.
  22. Саттон Д. Определитель патогенных и условно-патогенных грибов. М .: Мир, 2001. 486 с.
  23. Siddiquee S., Kobun R., Al Azad S., Saallah S. // JMBT. 2015. V. 7. № 6. https://doi.org/10.4172/1948-5948.1000243
  24. Remacle J. The cell wall and metal binding. Biosorption of heavy metals / Ed. B. Volesky. USA, Florida: CRC Press, Boca Raton, 1990. P. 83–92.
  25. Gow N.A.R., Latge J.P., Munro C.A. // Microbiol. Spectr. 2017. V. 5. № 3. https://doi.org/10.1128/microbiolspec.funk-0035-2016
  26. Горовой Л.Ф., Косяков В.Н . // Биополимеры и клетка. 1996. Т . 12. № 4. С . 49.
  27. Скугорева С.Г., Кантор Г.Я., Домрачева Л.И. // Теоретические проблемы экологии. 2019. № 2. С. 14. https://doi.org/10.25750/1995-4301-2019-2-014-031
  28. Naja G., Mustin C., Volesky B., Berthelin J. // Water Res. 2005. V. 39. № 4. https://doi.org/10.1016/j.watres.2004.11.008
  29. Priyadarshini E., Priyadarshini S.S., Cousins B.G., Pradhan N. // Chemosphere. 2021. V. 274. https://doi.org/10.1016/j.chemosphere.2021.129976
  30. Vo P.H.N., Danaee S., Nam Hai H.T., Lai N.H., Tuan A.H.N., Hong T.M. N. et al. // Sci. Total Environ. 2024. V. 908. https://doi.org/10.1016/j.scitotenv.2023.168210
  31. Veglio F., Beolchini F. // Hydrometallurgy. 1997. V. 44. № 3. P. 301. https://doi.org/10.1016/S0304-386X(96)00059-X
  32. Nawrocki P.R., Sørensen T.J. // Phys. Chem. Chem. Phys. 2023. V. 25. P. 19300. https://doi.org/10.1039/D3CP02033A
  33. Zschornack G.H. Handbook of X-ray Data. / Springer Science & Business Media, 2007. 969 p.
  34. Willis J.P., Feather C.E., Turner K. Guidelines for XRF Analysis. V. 1. Cape Town, South Africa: James Willis Consultants, 2014. P. 544.
  35. Halliwell G. // Nature. 1952. V. 169. P. 1063. https://doi.org/10.1038/1691063a0
  36. Zhang J., Zhang X., Su X., Du H., Lu Y., Zhang Q. // Molecules. 2024. V. 29. № 6. P. 1266. https://doi.org/10.3390/molecules29061266
  37. Hameed I.H., Hamza L.F., Kamal S.A. // J. Pharmacognosy Phytother. 2015. V. 7. № 8. P. 132. https://doi.org/10.5897/JPP2015.0354
  38. Gł owiak T., Legendziewicz J., Dao C.N., Huskow- ska E. // J. Less-Common Met. 1987. V. 134. № 2. P. 153. https://doi.org/10.1016/0022-5088(87)90553-4
  39. Elango D., Manikandan V., Jayanthi P., Velmurugan P., Balamuralikrishnan B., Ravi A.V. et al. // Curr. Plant Biol. 2020. V. 23. https://doi.org/10.1016/j.cpb.2020.100153
  40. Songa X., Liao Y., Liu T., Yin D ., Wang H., Chenet L. et al . // SSRN. 2022. https://doi.org/10.2139/ssrn.4088651
  41. Han T., Kim G.B., Lee S.Y. // PNAS. 2020. V. 117. № 48. P. 17483. https://doi.org/10.1073/pnas.2017483117
  42. Liberal Â., Sandrina R., Heleno A., Martins A. // Natural Secondary Metabolites. 2023. (Chapter). P. 475. https://doi.org/10.1007/978-3-031-18587-8_14
  43. Lykholat Y.V., Khromykh N.O., Didur O.O., Dreh- val O.A., Sklyar T.V., Anishchenko A.O. // Beni-Suef University Journal of Basic and Applied Sciences. 2021. V. 10. https://doi.org/10.1186/s43088-021-00171-2
  44. Li J., Chroumpi T., Garrigues S., Kun R.S., Meng J., Salazar-Cerezo S. et al. // J. Fungi (Basel). 2022. V. 8. № 12. P. 1315. https://doi.org/10.3390/jof8121315
  45. Feng S., Pan L., Li Q., Zhang Y., Mou F., Liu Z. et al. // Int. J. Mol. Sci. 2023. V. 24. 17611. https://doi.org/10.3390/ijms242417611
  46. Liu W., Xiang H., Zhang T., Pang X., Su J., Liu H. et al. // ACS Omega. 2021. V. 6. P. 9537. https://doi.org/10.1021/acsomega.1c00010
  47. Chattopadhyay P., Banerjee S.K., Sen K., Chakrabar- ti P. // Can. J. Microbiol. 1985. V. 31. № 4. Р . 352 –35 5. https://doi.org/10.1139/m85-067
  48. Wadman M.W., Vries R.P., Kalkhove S., Veldink G.A., Vliegenthart J.F. G. et al. // BMC. Microbiol. 2009. V. 23. № 9. https://doi.org/10.1186/1471-2180-9-59
  49. Wiese J., Imhoff J.F., Gulder T.A.M. , Labes A., Schmaljohann R. // Mar. Drugs. 2016. V. 14. https://doi.org/10.3390/md14110200
  50. Yu R., Liu J., Wang Y., Wang H., Zhang H. // Front. Chem. 2021. V. 30. № 9. https://doi.org/10.3389/fchem.2021.701022
  51. Das N., Das D. // J. Rare Earths. 2013. V. 31. № 10. P. 933. https://doi.org/10.1016/S1002-0721(13)60009-5
  52. Zhou H., Wang J., Shao S., Yu X., Kang J., Qiu G. et al. // J. Water Proc. Engineering. 2024. V. 59. P. 104965. https://doi.org/10.1016/j.jwpe.2024.104965
  53. Huskowska E., Legendziewicz J., Hanuza J. // Polyhedron. 1990. V. 9. № 5. P. 59–664. https://doi.org/10.1016/S0277-5387(00)80272-7
  54. Badertscher M., Bühlmann P., Pretsch E. Structure Determination of Organic Compounds. Tables of Spectral Data. 2009. 10.1007/978-3-540-93810-1' target='_blank'>https://doi: 10.1007/978-3-540-93810-1
  55. Böszörményi É., Dömötör O., Kutus B., Varga G., Peintler G., Sipos . P. // J. Mol. Struct . 2022. V . 1261. P . 132894. https :// doi . org /10.1016/ j . molstruc .2022.132894

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».