Distribution of absolute maximum of mean square differentiable Gaussian stationery process
- Авторы: Yevgrafov D.V.1
- 
							Учреждения: 
							- National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
 
- Выпуск: Том 60, № 4 (2017)
- Страницы: 181-192
- Раздел: Article
- URL: https://journal-vniispk.ru/0735-2727/article/view/177060
- DOI: https://doi.org/10.3103/S0735272717040045
- ID: 177060
Цитировать
Аннотация
In this paper it is obtained the distribution of absolute maximum of mean square differentiable stationery Gaussian process by means of integration of the results of the second Kolmogorov equation solution. It is shown the way simplifying integration and its interrelation to integro-differential equation obtained before. The second Kolmogorov equation is solved first for the boundary conditions allowing to obtain the results in form of infinite series with coefficients obtained by means of solution of Sturm–Liouville problem and reducing to the simple expression. It is analyzed the correlation of obtained results with known before. It is carried out a comparative analysis of correlation functions and expressions for distribution of absolute maximums of mean square differentiable and single-component Markov processes. In spite of correlation function of single-component Markov process can be considered as limit expression for correlation function of mean square differentiable process, the expression for distribution of their absolute maximums are essentially different. It shows practical meaning of the results since real processes in radio engineering systems can be mean square differentiable only.
Об авторах
D. Yevgrafov
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
							Автор, ответственный за переписку.
							Email: ramgraf@bigmir.net
				                					                																			                												                	Украина, 							Kyiv						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					