Voice Activity Detection Algorithm Using Spectral-Correlation and Wavelet-Packet Transformation
- Авторы: Korniienko O.1, Machusky E.1
- 
							Учреждения: 
							- National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
 
- Выпуск: Том 61, № 5 (2018)
- Страницы: 185-193
- Раздел: Article
- URL: https://journal-vniispk.ru/0735-2727/article/view/177205
- DOI: https://doi.org/10.3103/S0735272718050011
- ID: 177205
Цитировать
Аннотация
It is developed the voice activity detection algorithm using noise classification technique. It is proposed the spectral-correlation and wavelet-packet (WP) features of frames for voice activity estimation. There are tested three WP trees for effective representing of audio segments: mel-scaled wavelet packet tree, bark-scaled wavelet packet tree and ERB-scaled (equivalent rectangular bandwidth) wavelet packet tree. Application only two principal components of WP features allows to classify accurately the environment noise. The using wavelet-packet tree design which follows the concept of equivalent rectangular bandwidth for acoustic feature extraction allows to increase the voice/silence segments classification accuracy by at least 4% in compare to other classification based voice activity detection algorithms for different noise.
Об авторах
O. Korniienko
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
							Автор, ответственный за переписку.
							Email: olexandr.korniienko@gmail.com
				                					                																			                												                	Украина, 							Kyiv						
E. Machusky
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
														Email: olexandr.korniienko@gmail.com
				                					                																			                												                	Украина, 							Kyiv						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					