УДК 669.536.22+004.942+001.891.573

ПРИМЕНЕНИЕ БЛОЧНО-МОДУЛЬНОГО МЕТОДА ДЛЯ ОПИСАНИЯ И ИССЛЕДОВАНИЯ МЕХАНИЗМА ПРОТЕКАНИЯ ГЕТЕРОГЕННЫХ РЕАКЦИЙ ВЫЩЕЛАЧИВАНИЯ ОКИСЛЕННЫХ ЦИНКОВЫХ МАТЕРИАЛОВ

©2024 г. В.М. Зароченцев, А.Л. Рутковский

Северо-Кавказский горно-металлургический институт (Государственный технологический университет) — СКГМИ (ГТУ), Владикавказ
E-mail: vlazarm@gmail.com; rutkowski@mail.ru
Поступила в редакцию 20 сентября 2023 г.
После доработки 17 ноября 2023 г. принята к публикации 11 декабря 2023 г.

Рассмотрено гетерогенное взаимодействие водного раствора серной кислоты и твердого мелкодисперсного материала в условиях идеального смешения, возникающих при выщелачивании окисленных цинксодержащих материалов. Математическая модель включает в себя систему нелинейных уравнений материального баланса выщелачивания в непрерывном стационарном режиме. Разработана блочно-модульная схема в программном пакете Matlab Simulink, которая обеспечивает решение данной системы нелинейных уравнений. Разработанная блочно-модульная схема позволила выделить основные процессы и параметры в структурированной системе блоков, проводить имитационное моделирование, оценивать и предсказывать влияние разных условий на показатели процесса. В результате решения разработанной модели с применением итерационных численных методов получены графические зависимости, наглядно отражающие механизм выщелачивания цинкового огарка в растворе серной кислоты и изменение его показателей в зависимости от условий проведения процесса. Параметры модели могут быть настроены для получения наилучших показателей проведения процесса с высоким уровнем адекватности, а также позволяют применять информационные технологии и методы нейросетевой адаптации коэффициентов модели в условиях непрерывной обработки технологической информации. Методика блочно-модульного моделирования может быть расширена для других металлургических переделов и позволяет создавать библиотеки блоков для различных процессов.

Ключевые слова: математическая модель; выщелачивание; скорость потока на входе и выходе; реактор; скорость перемешивания; константа скорости реакции; мелкодисперсный оксид цинка; пульпа.

Металлургическое производство характеризуется многообразием протекающих физико-химических процессов. Для расчета показателей этих процессов требуется достаточно сложное математическое описание. В результате математическая модель металлургического аппарата часто представляет собой систему из большого числа нелинейных уравнений [1-3]. В литературных источниках (например, [4, 5]) можно найти аналитическое решение этих уравнений для наиболее простых случаев. Более сложные зависимости в виде регрессионной модели могут быть описаны на основе статистической обработки большого объема экспериментальных данных без учета физико-химического механизма протекающих процессов.

В большинстве случаев решение математической модели, включающей нелинейные уравнения, отражающие механизм протекающих процессов, возможно только с применением численных итерационных методов [1, 6, 7]. При этом число параметров и рассчитываемых показателей модели становится настолько велико, что затруднительно определить степень их влияния на протекающие в технологической системе процессы. Это в значительной степени осложняет создание компьютерных моделей таких систем.

Преодоление данной проблемы возможно, если решить ряд задач, а именно: 1) определить основной механизм моделируемых процессов как совокупность взаимодействия физических и химических закономерностей,

описывающих моделируемую систему; 2) выделить простые элементы из моделируемой системы и объединить их в блоки с заданным набором входных и выходных параметров; 3) объединить блоки в модули согласно физическим и химическим закономерностям, а также функциональным связям; 4) создать из модулей систематизированную иерархическую систему; 5) разработать программную компьютерную модель с применением специализированных пакетов программ (Simulink и др.)

Объединение отдельных процессов в вычислительные модули позволяет создать систематизированное иерархическое математическое описание в виде вычислительных блоков, наглядную и хорошо структурированную систему, в которой удобно выделить необходимые параметры и процессы для моделирования и изучения. Разрабатываемые компьютерные модели применяются для разнообразных процессов металлургического, химического и других производств [3, 8, 9]. Для создания таких моделей широко используются специализированные пакеты программ, такие как Matlab, Simulink, Anylogik [10—12]. Современные тенденции создания математических и компьютерных моделей процессов связаны с применением алгоритмов нейронных сетей и искусственного интеллекта [9, 13, 14]. В современных условиях цифровизации экономики и промышленности огромное значение придается развитию информационно-вычислительных систем в металлургическом производстве как одному из наиболее перспективных направлений для повышения эффективности производства, снижения затрат на энергоресурсы, повышения качества продукции и в целом возрождения промышленности России.

В данной работе для разработки математических и компьютерных моделей был выбран процесс выщелачивания оксидов цинка раствором серной кислоты. Во многих металлургических производствах применяются процессы выщелачивания, которые протекают между твердым мелкодисперсным материалом, обычно содержащим окисленные соединения металла, и раствором кислоты или щелочи. Эти процессы проводятся в разных условиях в аппаратах, которые потипу математического описания относят либо к идеальным реакторам смешения, вытеснения или к аппаратам, более сложно опи-

сываемых, с распределенными параметрами [15, 16]. Широко применяется методика создания моделей реальных процессов на основании идеальных, исходя из обобщения с применением специализированных программных пакетов, которое в дальнейшем преобразуется в компьютерные имитационные модели [17—20].

Данная работа направлена на создание блочно-модульного описания процесса выщелачивания на основе математического моделирования физико-химических закономерностей протекания процесса.

Методика разработки математической модели. Основной реакцией при гидрометаллургическом получении цинка является химическое гетерогенное взаимодействие между окисленным огарком, получаемым из печи кипящего слоя, и раствором серной кислоты в аппаратах смешения. Изучение закономерностей при выщелачивании проводилось во многих работах [21—24], но полученные результаты не отражают совокупное взаимодействие физических и химических процессов в аппарате выщелачивания и поэтому их нельзя в полном объеме рекомендовать для производственного использования [25].

Согласно литературным данным [4, 5] можно выделить следующие основные закономерности проведения этого процесса: 1) равномерное распределение реагентов по объему реактора в режиме, близком к идеальному смешению; 2) выщелачивание проводится в непрерывном стационарном или периодическом режиме; 3) контроль процесса преимущественно внешнедиффузионный; 4) скорость химического превращения при высокой интенсивности перемешивания ограничивается скоростью молекулярной диффузии; 5) площадь реакционной поверхности пропорциональна количеству ценного компонента в твердой фазе; 6) в твердой фазе присутствует невыщелачиваемый остаток, не вступающий в химическое взаимодействие. По совокупности эти закономерности отражают механизм процесса выщелачивания, при необходимости этот механизм можно усложнить, добавив другие закономерности.

Так как до настоящего времени математическое и программное описание совокупности указанных закономерностей не разработано, в задачу данного исследования включена разработка математической модели и блочно-модульной схемы выщелачивания

окисленных цинковых материалов раствором серной кислоты, реализующей указанный механизм.

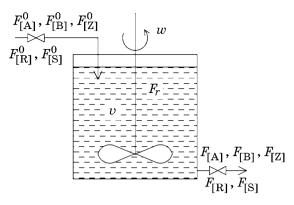
Рассмотрим бимолекулярное взаимодействие при выщелачивании цинкового огарка в растворе серной кислоты [5, 26], которое происходит по реакции:

$$H_2SO_4 + ZnO = ZnSO_4 + H_2O.$$
 (1)

В дальнейшем математическом описании данного процесса выщелачивания (1) реагенты системы для краткости обозначены латинскими символами: H_2SO_4 — серная кислота — [A]; ZnO — оксид цинка — [B]; $ZnSO_4$ — сульфат цинка — [R]; H_2O — вода — [S], т.е. уравнение (1) приводится к виду простой бимолекулярной реакции:

$$[A] + [B] = [R] + [S].$$
 (2)

При выщелачивании вещество [В] находится в твердых мелкодисперсных частицах, равномерно распределенных по всему реакционному объему в результате перемешивания. Примем, что процесс выщелачивания протекает в стационарном непрерывном режиме, близком к идеальному смешению, что соответствует непрерывной гидрометаллургической технологии цинкового производства [5, 4]. При этом в твердых частицах присутствует инертное вещество [Z], которое не вступает в химические взаимодействия и удаляется из реакционного объема с такой же скоростью, как и при поступлении.


Для разработки модели примем условия непрерывного нейтрального выщелачивания в аппарате с механическим перемешиванием (агитаторе), приведенные в литературных источниках [4, 5]. На смыв огарка поступает верхний слив кислых сгустителей, содержащий 20—40 г/л серной кислоты и 70—90 г/л цинка в виде растворенного сульфата; соотношение расходов Ж:Т составляет (10—14):1, содержание кислоторастворимого окисленного цинка в огарке 50—60%. Схематично моделируемый аппарат с указанием потоков веществ показан на фиг. 1.

Потоки веществ поступающих в реактор выражаются следующими уравнениями:

$$F_{[A]}^0 = F_{[A]} + F_r, (3)$$

$$F_{\rm IB1}^0 = F_{\rm IB1} + F_r, \tag{4}$$

$$F_{\rm IR1} = F_{\rm IR1}^0 + F_r, \tag{5}$$

Фиг. 1. Схема реактора смешения с потоками веществ на входе и выходе

$$F_{[\mathbf{Z}]} = F_{[\mathbf{Z}]}^0, \tag{6}$$

где $F_{[A]}^0$, $F_{[B]}^0$, $F_{[R]}^0$ — входящие в ячейку потоки веществ [A], [B] и [R] соответственно, моль/с; $F_{[A]}$, $F_{[B]}$, $F_{[R]}$ — выходящие из ячейки потоки указанных веществ, моль/с; F_r — поток вещества, превращающегося в результате химической реакции; $F_{[Z]}^0$, $F_{[Z]}$ — поток инертного нерастворимого твердого вещества, кг/с. В силу большого избытка воды в растворе изменение ее количества по реакции (1) не оказывает существенного влияния на показатели процесса. Поэтому поток вещества [S] при моделировании не учитывался, но он может быть легко определен из стехиометрических соотношений реакции (2).

Для моделирования процесса выбран стационарный и непрерывный режим идеального смешения, а реакция (1) протекает без изменения объема. Следовательно, уравнения (3)—(6) можно выразить через концентрации веществ в потоках на входе ($C_{[A]}^0$, $C_{[R]}^0$) и выходе ($C_{[A]}$, $C_{[R]}^0$):

$$vC_{\text{IAI}}^0 = vC_{\text{IAI}} = r_{LS}V, \tag{7}$$

$$vG_h^0\gamma^0_{[\mathrm{B}]} = vG_h\gamma_{[\mathrm{B}]} = r_{LS}VM_{[\mathrm{B}]}, \tag{8}$$

$$vC_{[R]} = vC_{[R]}^0 + r_{LS}V,$$
 (9)

$$vG_{[Z]}^0 = vG_{[Z]},$$
 (10)

где v — объемная скорость потока на входе и выходе, м³/с; V — объем реактора, м³; G_h^0 , G_h — содержание твердого в пульпе во входящем и выходящем потоках, кг/м³; $G_{[Z]}^0$, $G_{[Z]}$ — содержание нейтрального твердого компонента в пульпе на входе и выходе, кг/м³; r_{LS} — скорость реакции, моль/м³; $\gamma_{[B]}^0$, $\gamma_{[B]}$ — содержание реагирующего компонента [B] в твердом на входе и выходе; $M_{[B]}$ — молекулярная масса вещества [B].

В общем случае скорость гетерогенной реакции (2) в водной среде описывается дифференциальным уравнением в частных производных, которое учитывает конвективную и молекулярную диффузию, а также скорость химической реакции [2]:

$$\frac{dC_{[A]}}{dt} = D \left[\frac{\partial^2 C_{[A]}}{\partial x^2} + \frac{\partial^2 C_{[A]}}{\partial y^2} + \frac{\partial^2 C_{[A]}}{\partial z^2} \right] -$$

$$-\left(\frac{\partial C_{[A]}}{\partial x}w_x + \frac{\partial C_{[A]}}{\partial y}w_y + \frac{\partial C_{[A]}}{\partial z}w_z\right) + r_{[A]}, (11)$$

где $dC_{[{\rm A}]}/dt$ — скорость изменения концентрации вещества [A], моль/(с·м³); D — коэффициент молекулярной диффузии; $\partial^n C_{[{\rm A}]}/\partial u^n$ — частная производная концентрации $C_{[{\rm A}]}$ для порядка n по координате $u=x,\ y,\ z\ (w_u$ — проекция скорости вынужденного движения раствора относительно реакционной поверхности по координате u), м/с; $r_{[{\rm A}]}$ — скорость реакции по веществу [A], моль/(с·м³); t — время.

В уравнении (11) первое слагаемое выражает зависимость изменения концентрации вещества в результате молекулярной диффузии и представляет собой второй закон Фика [27]. Следующие слагаемые в скобках позволяют учитывать влияние скорости вынужденного движения раствора и частиц твердого, вызванного перемешиванием и конвекцией [2]. Последнее слагаемое в уравнении (11) выражает скорость химической реакции, которая протекает на поверхности частиц.

В промышленных условиях данный процесс требует интенсивного перемешивания [4, 5], следовательно доставка реагентов к реакционной поверхности ограничивается преимущественно скоростью принудительного движения раствора, которая описывается вторым слагаемым в уравнении (11).В обычных производственных условиях имеет место диффузионный контроль процесса [28, 29]. Повышение скорости выщелачивания в результате перемешивания ограничено минимальной толщиной диффузионного слоя вокруг твердой частицы, обусловленной силами смачивания и вязкостью раствора [2, 30]. Ограничивающим фактором скорости реакции становится массопередача реагентов посредством молекулярной диффузии, описываемая первым слагаемым в уравнении (11).

Полное решение уравнения (11) возможно численными методами с преобразовани-

ем дифференциальных уравнений в конечно-разностные [7], при этом аппарат выщелачивания рассматривается как объект с распределенными параметрами. Большое количество итерационных вычислений и множество распределенных параметров делают решение данной задачи весьма громоздким. Поэтому для моделирования была выбрана упрощенная формула скорости r_{LS} реакции (2), которая содержит основные параметры, влияющие на процесс, и учитывает основные закономерности его протекания [28]. Аппарат выщелачивания при этом рассматривается как объект с сосредоточенными параметрами:

$$r_{LS} = k_{LS} C_{[A]}^{\lambda_{[A]}} s_{[B]}, \tag{12}$$

где k_{LS} — константа скорости реакции; $\lambda_{[A]}$ — эмпирический порядок реакции по веществу [A]; $s_{[B]}$ — удельная реакционная поверхность, м²/кг.

Исследования кинетики выщелачивания окисленных соединений цинка в растворах серной кислоты [28, 29, 31, 32] показали, что константа скорости реакции (12) зависит от температуры и скорости перемешивания. Влияние температуры на константу скорости химической реакции выражается уравнением Аррениуса [33]:

$$k_T = k_0 \exp(-E_\alpha/RT), \tag{13}$$

где k_0 — эмпирический коэффициент; R — универсальная газовая постоянная, Дж/(моль·К); T — температура в реакторе, K; E_a — энергия активации, Дж/моль.

В связи с тем, что в работах [28, 31, 32, 34] получены разные функциональные зависимости константы скорости реакции от скорости перемешивания, в нашей работе исследовали два вида уравнений константы скорости:

$$k_{LS} = k_w \exp(-E_a/RT) w^{\lambda_w}, \tag{14}$$

$$k_{LS} = k_w \exp(-E_a/RT) \exp(\lambda_w/w), \qquad (15)$$

где k_w , λ_w — эмпирические коэффициенты; w — скорость перемешивания, м/с.

Для определения неизвестных параметров уравнений (14) и (15) проведен регрессионный анализ [35] значений константы скорости реакции растворения оксида цинка, полученных методом вращающегося диска в работе [29]. Данные из этой статьи пос-

Значения константы скорости реакции (1) $k_{
m ZnO},~1/({
m c}\cdot{
m m}^2),$ в зависимости от температуры и скорости перемешивания

	T, K	w, м/с (мин ⁻¹)				
п.п.		0,266 (240)	0,555 (500)	1,111 (1000)		
1	321	0,0732	0,1034	0,1452		
2	305	0,0488	0,0741	0,0998		
3	289	0,0305	0,0427	0,0589		

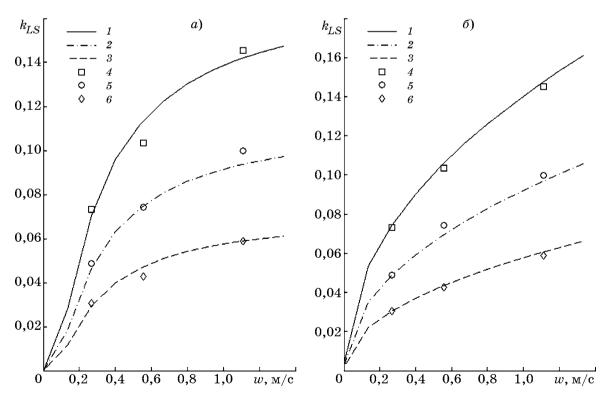
ле приведения к единицам СИ указаны в табл. 1.

Значения скорости рассчитывались по средней скорости вращения диска диаметром 30 мм относительно жидкости, соприкасающейся с его поверхностью, на расстоянии радиуса момента инерции от центра вращения (равен 10,61 мм).

Для расчета параметров уравнения регрессии вида $y = a_0 + a_1 x_1 + a_2 x_2$ проведено логарифмирование уравнений (14) и (15):

$$\ln(k_{LS}) = \ln(k_w) - E_a/RT + \lambda_w \ln_{(w)},$$
 (16)

$$\ln(k_{LS}) = \ln(k_w) - E_a/RT + \lambda_w/w, \qquad (17)$$


где $\ln(k_{LS}) = y$; $\ln(k_w) = a_0$; $E_a/R = a_1$; $1/T = x_1$; $\lambda_w = a_2$; $\ln(w) = x_2$ и $1/w = x_2$.

Расчетные значения параметров уравнений (16) и (17)

Уравнение	k_w	E_a	λ_w	$\delta_{\mathbf{k}}$	
(16)	429,1	21410	0,4807	0,0068	
(17)	497,2	21173	-0,2471	0,0138	

Методом наименьших квадратов [35] определены неизвестные коэффициенты уравнений (16) и (17), значения которых приведены в табл. 2. Расчеты проведены с учетом того, что при нулевой скорости вращения диска в реакторе скорость выщелачивания также стремится к нулю. После подстановки полученных значений коэффициентов в уравнения (16) и (17) получено, что оба уравнения адекватны с уровнем значимости 0,05 и средние квадратические отклонения δ_k не превышают допустимых интервалов.

На фиг. 2 приведены кривые зависимости константы скорости от температуры и скорости перемешивания. Видно, что расчетные кривые хорошо аппроксимируют экспериментальные данные, но экспоненциальная зависимость на фиг. 2, а лучше отражает процесс нарастания константы скорости реакции

Фиг. 2. Аппроксимация зависимости константы скорости реакции (1) от температуры и скорости перемешивания по уравнениям: a = (15); $\delta = (14)$. Кривые 1, 2, 3 рассчитаны соответственно при температурах 321, 305, 289 К. Группы точек 4, 5, 6— соответствуют выборкам данных в столбцах табл. 1 для скорости перемешивания w = 0.268; 0.555; 1.111 м/с.

при малой скорости перемешивания и замедление ее роста при высокой скорости перемешивания. Для дальнейших исследований в результате было выбрано уравнение (15).

Применение уравнения (15) для расчета константы скорости реакции в условиях выщелачивания с механическим или аэрационным перемешиванием (в агитаторе или пачуке [4]) возможно при рассмотрении скорости перемешивания как условного усредненного показателя разницы скоростей движения раствора и частиц твердого вещества. Такая скорость перемешивания является настроечным параметром и в производственных условиях непосредственно связана со скоростью вращения мешалки и другими гидродинамическими факторами.

Параметрическая идентификация уравнения (13) выполнена по экспериментальным данным из статьи [28], полученным при выщелачивании мелкодисперсного оксида цинка в растворе серной кислоты с механическим и вибрационным перемешиванием. Результаты приведены в табл. 3 (Эксп., Расч. — соответственно экспериментальные и расчетные данные).

Оценка поверхности частиц выщелачиваемого материала в работе [28] проводилась подсчетом их числа под микроскопом при допущении, что все частицы приобретают шарообразную форму при выщелачивании. Такой метод оценки позволяет выразить реакционную поверхность через количество частиц в пульпе обобщенным уравнением:

$$s_{\rm ZnO} = k_s G_{\rm ZnO}^{\lambda s},\tag{18}$$

где $s_{\rm ZnO}$ — удельная реакционная поверхность частиц, м $^2/\kappa$ г; k_s — эмпирический ко-

эффициент, учитывающий дисперсность частиц; λ_s — коэффициент, учитывающий форму частиц (λ_s = 0,667 для шарообразных частиц); $G_{\rm ZnO}$ — содержание реагента [B] (оксида цинка) в пульпе, кг/м³.

Реакционная поверхность $s_{[B]}$ зависит от количества твердого в пульпе, содержания ценного компонента [В] в твердом, среднего размера и формы частиц согласно следующему уравнению:

$$s_{[B]} = k_s (G_h \gamma_{[B]})^{\lambda_{[B]}}, \tag{19}$$

где $\lambda_{[B]}$ — эмпирический коэффициент, учитывающий порядок реакции по веществу [B] и форму реакционной поверхности. Для простой бимолекулярной реакции (2) порядок реакции по обоим реагентам равен единице, следовательно с учетом формы реакционной поверхности $\lambda_{[B]} = \lambda_s$.

Подставив в уравнение (12) выражение для реакционной поверхности (19), получим уравнение для скорости реакции (2):

$$r_{LS} = k_{ws} C_{[A]}^{\lambda_{[A]}} (G_h \gamma_{[B]})^{\lambda_s}, \qquad (20)$$

где $k_{ws} = k_{LS} k_s$.

В уравнении (20) неизвестными переменными являются выходные показатели процесса $C_{[A]}$, $\gamma_{[B]}$ и G_h . Остальные параметры задаются условиями проведения процесса в технологическом аппарате и определяются методами параметрической идентификации моделей [7, 36].

Для уменьшения числа неизвестных параметров выразим содержание твердого на выходе через содержание реагента [В] с помощью следующих соотношений:

$$G_h = F_h/v, (21)$$

Таблица 3

Расчет параметров уравнения (13)
при выщелачивании мелкодисперсного материала

№ п.п.	Данные	$k_{ m ZnO}$ при температуре T			${k_0}^*$	E_a	$\delta_{\mathbf{k}}$
		289 K	305 K	321 K			
1	Эксп.	0,0817	0,2167	0,4116	982732	39058	0,025
	Расч.	0,0850	0,1995	0,430	904104		
		289 K	303 K	323 K			
2	Эксп.	0,0621	0,1181	0,2396	22751	30724	0,0054
	Расч.	0,0632	0,1142	0,2431			

 $[*]k_0 = k_w \exp(\lambda_w/w)$ с учетом уравнения (15).

$$F_h = F_{(2)}/(1 - \gamma_{(B)}),$$
 (22)

$$F_{\rm IZI} = vG_b^0(1 - \gamma_{\rm IBI}^0). \tag{23}$$

Из приведенных соотношений последовательной подстановкой (23) в (22) и (22) в (21) получим зависимость содержания твердого компонента на выходе от содержания вещества [B] в твердом:

$$G_h = G_h^0 \frac{1 - \gamma_{\text{[B]}}^0}{1 - \gamma_{\text{[B]}}}.$$
 (24)

Подставив выражение (24) в (20), получим уравнение скорости реакции (2), зависящее от двух переменных: $C_{[A]}$ и $\gamma_{[B]}$. Для определения значений этих величин необходимо решить систему из двух нелинейных уравнений (7) и (8). Для удобства применения численного метода необходимо приравнять их нулю:

$$vC_{[A]}^{0} - vC_{[A]} - r_{LS}V = 0,$$
 (25)

$$vG_h^0 \gamma^0_{IB1} - vG_h \gamma_{IB1} - r_{LS} V M_{IB1} = 0.$$
 (26)

Скорость реакции в этих уравнениях вычисляется по развернутому выражению (20):

$$\begin{split} r_{LS} &= \boldsymbol{k}_{ws} \exp(-E_a/RT) \exp(\lambda_w/w) \times \\ &\times C_{\text{IAI}}^{\lambda_{\text{IAI}}} (G_h \gamma_{\text{IBI}})^{\lambda_s}, \end{split} \tag{27}$$

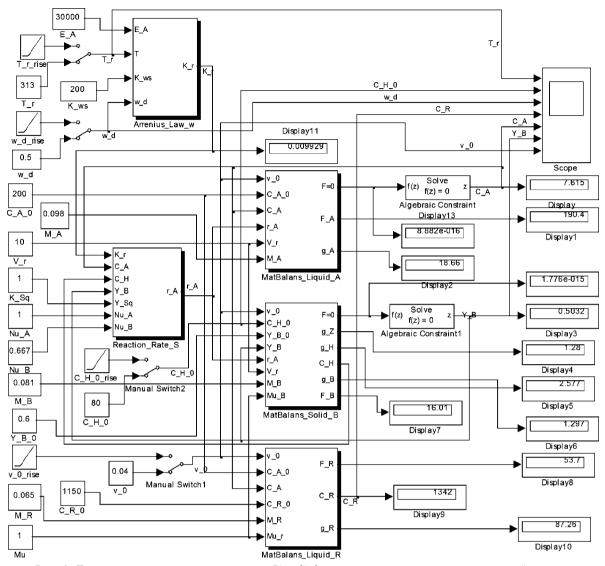
здесь $\boldsymbol{k}_{ws} = k_w k_s$.

Уравнения (25)—(27) образуют математическую модель процесса выщелачивания. Основываясь на проведенных исследованиях для имитационного моделирования задали следующие параметры уравнения (27): $\lambda_{[A]} = 1$; $\lambda_s = 0.667$; $\lambda_w = -0.247$; $k_{ws} = 200$.

Коэффициенты в уравнении скорости реакции могут быть адаптированы для производственных условий: в зависимости от типа реактора, характеристик выщелачиваемого материала, температурных и гидродинамических условий в моделируемом аппарате. Методика определения этих коэффициентов на основе статистических критериев описана в работе [35]. В результате степень адекватности модели повышается до необходимого значения.

Создание блочно-модульной схемы. Для решения полученной системы уравнений (25), (26) создана блочно-модульная модель Simulink [37], приведенная на фиг. 3. Модель реализует механизм процесса взаимодействия жидкости и твердого диспергирован-

ного материала в пульпе, позволяет исследовать влияние температуры, скорости перемешивания и скорости подачи реагентов на этот пропесс.


При разработке данной модели были использованы методы блочного моделирования процессов выщелачивания [36, 38, 39]. Модулями в данной схеме являются комбинации блоков, реализующие основные закономерности, представленные в виде уравнений математической модели. Средствами программной среды Simulink каждый модуль преобразуется в подсистему с набором входов и выходов, как это показано на фиг. 3 и в табл. 4.

Блоки, из которых формируются модули и другие элементы схемы, выбираются из библиотек Simulink. Они реализуют математические функции, операции ввода—вывода данных, итерационных вычислений и другие процедуры с данными и переменными модели.

Во входных блоках констант в левой части блочно-модульной схемы задаются значения параметров, которые обрабатываются в модулях, соответствующих уравнениям математической модели. В правой части схемы в блоках «Scope» и «Display» отображаются результаты моделирования и сохраняются данные в память для дальнейшей обработки и построения графиков.

Для изменения влияния факторов скорости потока раствора через реактор и перемешивания установлены блоки переключения «Manual Switch», которые позволяют вручную выбрать стационарный или линейно возрастающий режим изменения таких параметров, как температура реактора «Т_r», скорость перемешивания «w_d», концентрация твердого на входе «С_H_0», скорость подачи раствора «v 0».

Модули «Reaction_Rate_S», «Arrenius_Law_w», «MatBalans_Liquid_A», «MatBalans_Liquid_A», «MatBalans_Liquid_B» и «MatBalans_Liquid_R» созданы как подсистемы, реализующие соответствующие уравнения модели и вычисляющие ее параметры. Условием правильного решения является равенство нулю уравнений материального баланса, которому соответствуют выходы «F=0» соответствующих модулей. Решение достигается итерационным поиском значений переменных С_A и Y_B в блоках «Algebraic Constraint». В результате определяются искомые концентрации [A] в растворе и содержания [B] в твердом.

Фиг. 3. Блочно-модульная схема в модели Simulink, описывающая механизм взаимодействия по реакции (2) раствора и твердого вещества в реакторе идеального смешения

Таблица 4

Математическое представление элементов блочно-модульной схемы

	математическое представление элементов олочно-модульнои схемы							
№	Наименование модуля/блока	Обозначение	Обозначение на	Значение	Единицы			
п.п.	710 - 7	в тексте схеме			измерения			
1	Концентрация [А] на входе	$C^0_{[{ m A}]}$	C_A_0	200	$моль/м^3$			
2	Объем реактора	V	V_r	10	\mathbf{m}^3			
3	Содержание твердого в пульпе	G_h^{0}	C_H_0	80	$\kappa \Gamma/\mathrm{M}^3$			
	на входе							
4	Содержание [В] в твердом на	γ _[B]	Y_B_0	0,6	доли			
	входе	1,23			единицы			
5	Скорость подачи раствора	υ	v_0	$[0,01-0,06]^*$	$ m m^3/c$			
6	Скорость перемешивания	w	w_d	$[0,1-1,2]^*$	м/с			
7	Скорость реакции	yp. (27)	Reaction_Rate_S	[]*	моль/(с·м ³)			
8	Модуль уравнения константы	yp. (15)	Arrenius_Law_w	[0,00993]*	1/(c·m ²)			
	скорости реакции							
9	Модуль уравнения	yp. (25)	MatBalans_Liquid_A	0	моль/с			
	материального баланса [А]							
10	Модуль уравнения	yp. (26)	MatBalans_Liquid_B	0	моль/с			
	материального баланса [В]							
11	Модуль уравнения	yp. (9)	MatBalans_Liquid_R	[53, 7]	моль/с			
	материального баланса [R]							

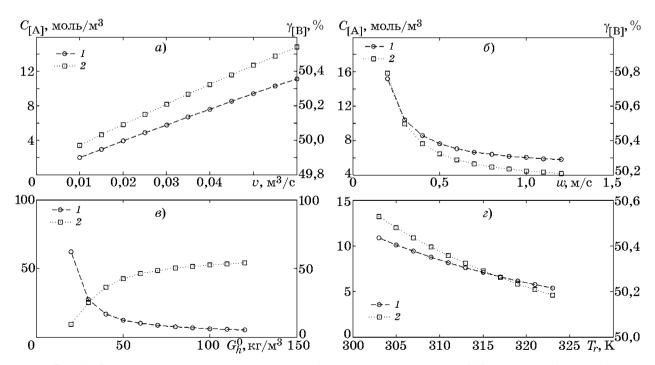
^{*}Величины с изменяющимися значениями.

В табл. 4 приведены основные параметры этой модели и входящие в нее модули. Основные уравнения математической модели представлены модулями, сформированными в виде подсистем, которые указаны в строках 7—11. Каждый модуль содержит определенное число входов и выходов, а также функционал, соответствующий выражаемому уравнению:

$$Y_i = \Phi_i(X_i, U_i), \tag{28}$$

где Y_i — вектор выходных показателей i-го модуля; Φ_i — функция (математическая модель) i-го модуля; X_i — вектор входных параметров i-го модуля; U_i — вектор внутренних параметров; i — порядковый номер модуля в блочно-модульной схеме (i=1,...,m).

Результаты моделирования. Результаты моделирования приведены на фиг. 4. На графиках показано изменение концентрации кислоты и содержания оксида цинка в твердом веществе на выходе из реактора при возрастании входных параметров. На входе модели заданы следующие стационарные параметры: T=313 K; $E_a=30$ кДж/моль; w=0.5 м/с; $C_{\rm [A]}^0=200$ моль/м³; V=10 м³; $G_h^0=80$ кг/м³; $\gamma_{\rm [B]}^0=0.6$; $v_0=40$ л/с; $C_{\rm [R]}^0=1150$ моль/м³.


Кривые на фиг. 4, a показывают рост концентрации реагентов с увеличением скорости подачи раствора в диапазоне от 0.01 до $0.06~{\rm m}^3/{\rm c}$, что очевидно соответствует уменьшению времени пребывания и соответствует показателям моделируемого процесса в производственных условиях.

На фиг. 4, б кривые показывают уменьшение концентрации реагентов на выходе из аппарата при увеличении интенсивности перемешивания. Это происходит в результате более полного протекания реакции выщелачивания (2) при увеличении скорости реакции по уравнению (27).

Кривая на фиг. 4, в свидетельствует об уменьшении концентрации реагента [А] (серная кислота) и увеличении содержания реагента [В] (оксид цинка) в твердом веществе на выходе при увеличении концентрации твердого во входном растворе. Это объясняется избыточным количеством твердого в растворе для протекания химической реакции.

Показанное на фиг. 4, г уменьшение концентрации реагента [А] и содержания реагента [В] в твердом на выходе из реактора при повышении температуры вызвано увеличением скорости растворения согласно уравнению Аррениуса (13).

Анализ графиков на фиг. 4 показывает, что решение модели в изменяющихся условиях соответствует описанному в уравнени-

Фиг. 4. Результаты моделирования остаточной концентрация вещества [A] в растворе (кривая 1) и содержание вещества [B] (кривая 2) в зависимости от скорости подачи раствора (a), скорости перемешивания (δ), концентрации твердого раствора на входе в реактор (ϵ), температуры реакционной смеси (ϵ)

ях механизму протекания процесса химического взаимодействия раствора и диспергированного твердого материала в реакторе идеального смешения.

Выводы. 1. Создана математическая модель, описывающая механизм процесса выщелачивания окисленных материалов с учетом концентрации реагентов и интенсивности перемешивания пульпы.

- 2. Разработана блочно-модульная схема в модели Simulink, позволяющая выделить основные процессы и параметры в структурированной системе блоков, проводить имитационное моделирование, оценивать и предсказывать влияние разных условий на показатели процесса, проводить оптимизацию технологической системы.
- 3. Выполнено решение разработанной модели с применением итерационных методов, которое наглядно отражает механизм выщелачивания цинкового огарка в растворе серной кислоты и изменение его показателей в зависимости от условий проведения процесса.
- 4. Параметры модели могут быть настроены для разных условий проведения процесса с получением высокого уровня адекватности, а также позволяют применять методы нейросетевой адаптации коэффициентов модели в условиях непрерывного получения технологической информации.
- 5. Разработанная методика блочно-модульного моделирования может быть расширена для некоторых металлургических переделов и позволяет создавать библиотеки блоков для разных технологических процессов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Xиммельблау, Д.М. Прикладное нелинейное программирование / Д.М. Химмельблау. М. : Мир, 1985. 536 с.
- Дудников, Е.Г. Построение математических моделей химико-технологических объектов / Е.Г. Дудников, В.С. Балакирев, В.Н. Кривосунов, А.М. Цирлин. Л.: Химия, 1970. 312 с.
- Кафаров, В. Математические основы автоматизированного проектирования химических производств / В. Кафаров, В.П. Мешалкин, В.Л. Перов. М.: Химия, 1979. 320 с.
- Баймаков, Ю.В. Электролиз в гидрометаллургии / Ю.В. Баймаков, А.И. Журин; 2 изд. М.: Металлургия, 1977. 338 с.
- 5. Зайцев, В.Я. Металлургия свинца и цинка / В.Я. Зайцев, Е.В. Маргулис. М.: Металлургия, 1985. 263 с
- 6. Гартман, Т.Н. Моделирование химико-технологических процессов. Принципы применения пакетов компьютерной математики: учеб. пособие / Т.Н.

- Гартман, Л.В. Клушин. СПб: Лань, 2020, 404 с.
- 7. Батунер, Л.М. Математические методы в химической технике / Л.М. Батунер, M.Е. Позин. Л.: Химия, 1971. 824 с.
- 8. *Бояринов, А.И.* Методы оптимизации в химической технологии / А.И. Бояринов, В.В. Кафаров. М.: Химия, 1975. 576 с.
- 9. Спирин, Н.А. Математическое моделирование металлургических процессов в АСУТП / Н.А. Спирин, В.В. Лавров, В.Ю. Рыболовлев, Л.Ю. Гилева, А.В. Краснобаев, В.С. Швыдкий, О.П. Онорин, К.А. Щипанов, К.А. Брыкин; под ред. Н.А. Спирина. Екатеринбург: Изд. ООО «УИПЦ», 2014. 558 с.
- Середа, С.Н. Особенности моделирования химических реакторов в МАТLАВ / С.Н. Середа // Методы и устройства передачи и обработки информации. 2021. №23. С. 89—94.
- 11. Corina, M.D. Mathematical modeling and simulation in Matlab/Simulink of processes from iron ore sintering plants / M.D. Corina, G.N. Popa, A. Iagar // Wseas Trans. Systems. 2009. V.8. №1. P.34—43.
- 12. Khoshnam, F. Development of a dynamic population balance plant simulator for mineral processing circuits / F. Khoshnam, M.R. Khalesi, A.K. Darban, M.J. Zarei // Int. J. Min. & Geo-Eng. 2015. V.49. Nº1. June. P.143—153.
- Saldaña, M. Mineral leaching modeling through machine learning algorithms: A review / M. Saldaña, P. Neira, S. Gallegos, E. Salinas-Rodriguez, I. Perez-Rey, N. Toro // Frontiers in Earth Sci. 2022. V.10. №4. P.6.
- 14 Дьяконов, В.П. MATLAB 6.5 SP1/7/7 SP1/7 SP2 + Simulink 5/6. Инструменты искусственного интеллекта и биоинформатики / В.П. Дьяконов, В.В. Круглов. М.: Солон-пресс, 2006. 456 с.
- Бигеев, В.А. Исследование двухстадийного способа переработки пылей и шламов с помощью математических моделей / В.А. Бигеев, А.А. Черняев, А.В. Пантелеев // Вест. МГТУ им. Г.И. Носова. 2014. №3. С.48—51.
- 16. Трусов, Б.Г. Моделирование кинетики химических превращений: термодинамический подход / Б.Г. Трусов // Вест. МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2005. №3. С.26—38.
- 17. Coetzee, J.W. A dynamic CIP simulation using Matlab Simulink / J.W. Coetzee, H.E. Deist // Computational analysis in hydrometallurgy: 35th annual hydrometallurgy meeting (August 21—24, 2005).—Calgary: Alberta, 2005.
- 18. Кудасов, А.М. Компьютерное моделирование металлургических процессов в программе AnyLogic / А.М. Кудасов // Наука и современность. 2012. № 19—2. Р.60—67.
- Куприяшкин, А.Г. Математические модели металлургических процессов в ANYLOGIC / А.Г. Куприяшкин, Л.И. Петухова // Науч. вест. Арктики. Техн. науки. 2019. №5. С.6—129.
- 20. Duenas Diez, M. Simulation of a hydrometallurgical leaching reactor modeled as a DAE system / M. Duenas Diez, G. Ausland, M. Fjeld, B. Lie // Modeling, Identification and Control (MIC). 2002. V.23. №04. P.2—28.
- 21. Козлов, П.А. Исследование поведения цинка и примесей при щелочном выщелачивании цинксодержащего продукта пирометаллургической переработки пылей черной металлургии и фазового состава остатка после выщелачивания / П.А. Козлов, А.М.

- Паньшин, С.А. Якорнов, Д.А. Ивакин // Цв. металлы. 2021. №3.
- 22. Саблин, А.В. Моделирование процессов седиментации полидисперсных смесей при помощи пакета прикладных программ MATLAB / А.В. Саблин // Наука и производство Урала. 2018. № 14. С.63—67.
- 23. Якорнов, С.А. Современное состояние технологий выщелачивания пылей черной металлургии и продуктов их пирометаллургической переработки (кислотная, аммонийная и щелочная технологии) / С.А. Якорнов, А.М. Панышин, П.А. Козлов, Д.А. Ивакин // Цв. металлы. 2017. №5. С.37—43.
- 24. *Медведев, А.С.* Теория гидрометаллургических процессов / А.С. Медведев, Е.В. Богатырева. М.: Изд. дом МИСиС, 2009. 346 с.
- 25. Вовнова, Т.М. О методе утилизации отходов заводов ОЦМ / Т.М. Вовнова, А.И. Орехова, С.А. Паюсов // Вест. Уральск. гос. мед. акад. 1999. №8. С.93—94.
- 26. Романтеев, Ю.П. Металлургия тяжелых цветных металлов: свинец, цинк, кадмий / Ю.П. Романтеев, В.П. Быстров. М.: Изд. дом МИСиС, 2010. $574~\rm c.$
- Баранов, Д.А. Массообмен / Д.А. Баранов // Большая российская энциклопедия. 2011. Т.19. С.311, 312. — (Электронная версия, 2017).
- 28. Вишняков, И.А. О скорости растворения оксида цинка в растворах серной кислоты / И.А. Вишняков, А.Д. Погорелый, В.Я. Царенко // Изв. вузов. Цв. металлургия. 1972. №3. С.56—61.
- Вишняков, И.А. Исследование кинетики растворения окиси цинка в серной кислоте методом вращающегося диска / И.А. Вишняков, А.Д. Погорелый, В.Я. Царенко // Изв. вузов. Цв. металлугия. 1972. №4. С.22—27.
- 30. Франк-Каменецкий, Д.А. Диффузия и теплопередача в химической кинетике / Д.А. Франк-Каменецкий; 2-е изд. М.: Наука, 1967. 492 с.

- 31. *Крестовников, А.Н.* Исследование кинетики растворения окиси цинка в серной кислоте / А.Н. Крестовников, Е.А. Давыдовская // Физическая химия. 1936. Т.8. №1. С.77—84.
- 32. *Реутов*, Д.С. Изучение кинетики растворения феррита цинка методом вращающегося диска / Д.С. Реутов, Б.Д. Халезов, Л.А. Овчинникова, А.С. Гаврилов // Цв. металлы. 2017. №11. С.12—15.
- 33. Закгейм, А.Ю. Введение в моделирование химикотехнологических процессов / А.Ю. Закгейм. — М.: Химия, 1982. 288 с.
- 34. *Ньюмен*, Д. Электрохимические системы / Д. Ньюмен; под ред. Ю.А. Чизмаджева. М.: Мир, 1977. 464 с.
- 35. Зароченцев, В.М. Методика статистического анализа стационарной кинетической модели ячейки идеального смешения / В.М. Зароченцев, Т.В. Кондратенко, А.К. Макоева // Вест. Воронеж. гос. ун-та инж. технол. 2018. Т.80. №4. С.133—137.
- 36. Зароченцев, В.М. Динамика реакции в ячейке с идеальным смешением в растворе / В.М. Зароченцев, Т.В. Кондратенко, А.К. Макоева // Инж. вест. Дона. 2018. №2 (49). 66 с.
- Черных, И.В. SIMULINK среда создания инженерных приложений / И.В. Черных. М.: "Диалог-МИФИ", 2004. 491 с.
- 38. Зароченцев, В.М. Применение метода блочного моделирования каскада реакторов выщелачивания в среде Matlab / В.М. Зароченцев // Изв. вузов. Цв. металлургия. 2006. №4. С.61—66.
- 39. Зароченцев, В.М. Математическое моделирование и оптимизация процесса очистки отработанной масляной смазочно-охлаждающей жидкости / В.М. Зароченцев, Л.А. Воропанова, А.С. Швыдко // Прикладная химия. 2005. Т.78. №11. Р.19.07—19.11.