Accuracy Analysis of New Freely Available Digital Terrain Models in the European Territory of Russia
- Authors: Maltsev K.A.1, Talipova S.N.1, Magzyanov I.I.1, Somov A.A.1, Maltseva T.S.1
-
Affiliations:
- Kazan Federal University
- Issue: Vol 157, No 1 (2025)
- Pages: 79-98
- Section: Articles
- URL: https://journal-vniispk.ru/0869-6071/article/view/292702
- DOI: https://doi.org/10.31857/S0869607125010067
- EDN: https://elibrary.ru/LICYUM
- ID: 292702
Cite item
Full Text
Abstract
Since 2019, several new global-coverage DEMs (Copernicus GLO-30, NASADEM, FABDEM) have become publicly available on the Internet. They could be used to obtain morphometric indicators and assess model soil erosion losses, including within the European Territory of Russia (ETR), where the main arable lands of the Russian Federation are located. To date, a number of studies have been carried out to assess the altitude accuracy of these models. However, in addition to absolute altitude errors, it is necessary to assess the accuracy of the of morphometric indicators calculated on the basis of these models.
The article presents the results of the analysis of errors of such morphometric indicators as slope steepness, slope length, and relief erosion potential of three new global digital elevation models using the example of three sites located in the Voronezh, Saratov and Orenburg regions. The analysis of errors was performed by comparing with data calculated on the basis of DEMs constructed from large-scale topographic maps.
It was found that the smallest errors in the estimated slope are demonstrated by the FABDEM model. In calculating slope lengths, none of the new models show a result that is superior in quality to what can be obtained using older DTMs (SRTM, etc.). However, for the LS-factor, the smallest errors are obtained when using the FABDEM model. The results obtained are valid both for the entire territory of each site in general and for arable lands in particular. The minimum values of errors in the LS-factor when using the FABDEM model lead to minimization of errors in calculating erosion losses of soil.
Keywords
About the authors
K. A. Maltsev
Kazan Federal University
Author for correspondence.
Email: mlcvkirill@mail.ru
Russian Federation, Kazan
S. N. Talipova
Kazan Federal University
Email: ssaffiaaa@gmail.com
Russian Federation, Kazan
I. I. Magzyanov
Kazan Federal University
Email: ildanmag@bk.ru
Russian Federation, Kazan
A. A. Somov
Kazan Federal University
Email: rooneyandre901@gmail.com
Russian Federation, Kazan
T. S. Maltseva
Kazan Federal University
Email: elka-tata_77@mail.ru
Russian Federation, Kazan
References
- Ashatkin I. A., Maltsev K. A., Gainutdinova G. F., Usmanov B. M., Gafurov A. M., Ganieva A. F., Maltseva T. S., Gizzatullina E. R. Analysis of relief morphometry by global DEM in the southernpart of the European territory of Russia // Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki. 2020. T. 162. Vyp. 4. S. 612–628. https://doi.org/10.26907/2542-064X.2020.4.612-6282
- Ivanov M. A., Prishchepov A. V., Golosov V. N., Zalyaliev R. R., Efimov K. V., Kondrat’eva A. A., Kinyashova A. D., Ionova Yu. K. Method of croplands dynamics mapping in river basins of the European part of Russia for the period of 1985–2015 // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 161–171 https:// doi.org/10.21046/2070-7401-2017-14-5-161-171
- Instruktsiya po fotogrammetricheskim rabotam pri sozdanii tsifrovykh topograficheskikh kart i planov [Instruction on Photogrammetry while Creating Digital Topographic Maps and Plans]. Moscow, TsNIIGAiK, 2002. 48 p.
- Kuznetsova, A. S., Pushkarev, A. A., Krasnoshchekov, K. V. 2023. Primeneniye FABDEM i drugikh sovremennykh tsifrovykh modeley rel’yefa v sisteme agrarnogo monitoringa // Informatsionnyye i matematicheskiye tekhnologii v nauke i upravlenii. 2023. Vyp. 4. S. 139–147. https://doi.org/10.25729/ESI.2023.32.4.012
- Litvin L. F. Geografiya erozii pochv sel’skokhozyaystvennykh zemel’ Rossii. — M.: Akademkn., 2002. — 255 c.
- Mal’tsev K. A., Yermolaev O. P. Using DTM for automatic plotting of catchments. Geomorfologiya. 2014;(1):45-52. https://doi.org/10.15356/0435-4281-2014-1-45-52
- Maltsev K. A., Golosov V. N., Gafurov A. M. Tsifrovyye modeli rel’yefa i ikh ispol’zovaniye v raschotakh tempov smyva pochv na pakhotnykh zemlyakh // Uchenyye zapiski kazanskogo universiteta. Seriya yestestvennyye nauki. 2018, T. 160, vyp. 3 S. 514–530
- On’kov I. V., Onyanova T. Ya., Shilyayeva O. Yu. Issledovaniye tochnosti radarnykh TSMR, postroyennykh po snimkam ALOS PALSAR i modeli SRTM, v zavisimosti ot vida otrazhayushchey poverkhnosti // Geomatika. 2012. Vyp 4. S. 33–36.
- Tolkacheva V. F., Gartsman B. I. Modelirovaniye rechnoy seti na osnove tsifrovoy modeli rel’yefa (na primere Chernomorskogo poberezh’ya Kavkaza) // Pyatyye Vinogradovskiye Chteniya. Gidrologiya v Epokhu Peremen : Sbornik Dokladov Mezhdunarodnoy Nauchnoykonferentsii Pamyati Vydayushchegosya Russkogo Uchenogo Yuriya Borisovicha Vinogradova. Sankt-Peterburg: Izdatel’stvo VVM, 2023 S. 604–609.
- Florinskiy I. V. Geomorfometriya segodnya. InterKarto, InterGIS. 2021. T. 27. Vyp. 2. S. 394–447. https://doi.org/10.35595/2414-9179-2021-2-27-394-448
- Erozionno-ruslovyye sistemy : monografiya / pod nauch. red. R. S. Chalova, A. Yu. Sidorchuka, V. N. Golosova. M. : INFRA-M, 2017. 698 s.
- ALOS Global Digital Surface Model “ALOS World 3D — 30m (AW3D30)” Japan. [2018]. URL: https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30e.htm (application date 01.06.2020)
- ASTER Global Digital Elevation Model Version 2 — summary of validation results, [2011]. URL: https://pubs.usgs.gov/publication/70005960 (application date 01.06.2020)
- Barnes R. Parallel PriorityFlood depression filling for trillion cell digital elevation models on desktops or clusters // Computers & Geosciences. — 2016. — Vol. 96. — P. 56–68.
- Borrelli P., Alewell C., Alvarez P. et al. Soil erosion modelling: A global review and statistical analysis // Sci. Total Environ. 2021. N 780. 146494. https://doi.org/10.1016/j.scitotenv.2021.146494
- Buckley S. M., Agram P. S., Belz J. E., Crippen R. E., Gurrola E. M., Hensley S., Kobrick M. NASADEM:User Guide. Pasadena, California, 2020. 52 p.
- Carrera-Hernández J. J. Not all DEMs are equal: An evaluation of six globally available 30 m resolution DEMs with geodetic benchmarks and LiDAR in Mexico // Remote Sens. Environ. 2021. N 261. 112474. https://doi.org/10.1016/j.rse.2021.112474
- del Rosario González-Moradas M., Viveen W., Andrés Vidal-Villalobos R., Carlos Villegas-Lanza J. A performance comparison of SRTM v. 3.0, AW3D30, ASTER GDEM3, Copernicus and TanDEM-X for tectonogeomorphic analysis in the South American Andes // CATENA. 2023. № 228. 107160. https://doi.org/10.1016/j.catena.2023.107160
- Desmet P. J. J., Govers G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units // Journal of Soil and Water Conservation. 1996. № 51. P. 427–433.
- Emmendorfer I. B., de Almeida L. P. M., Alves D. C. L., Emmendorfer L. R., Arigony-Neto J. Accuracy assessment of global DEMs for the mapping of coastal flooding on a low-lying sandy environment: Cassino Beach, Brazil // Reg. Stud. Mar. Sci. 2024. N 74. 103535. https://doi.org/10.1016/j.rsma.2024.103535
- Farr T. G., Rosen P. A., Caro E. et al. 2007. The Shuttle Radar Topography Mission // Rev. Geophys. 2007. № 45. https://doi.org/10.1029/2005RG000183
- Ghannadi A., Alebooye S., Izadi M. Vertical accuracy assessment of copernicus DEM (case study: Tehran and Jam cities) // ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2023. N X-4/W1-202. P. 209–214. https://doi.org/10.5194/isprs-annals-X-4-W1-2022-209-2023
- Hawker L., Uhe P., Paulo L., Sosa J., Savage J., Sampson C., Neal J. A 30m global map of elevation with forests and buildings removed // Environ. Res. Lett. 2022. № 2, vol. 17. 024016. https://doi.org/10.1088/1748-9326/ac4d4f
- Hutchinson M. A new procedure for gridding elevation and stream of data with automatic removal of spurious pits // J. Hydrol. 1989. №106. P. 211–232. https://doi.org/10.1016/0022-1694(89)90073-5
- Hutchinson M. F. et al. Recent progress in the ANUDEM elevation gridding procedure //Geomorphometry. — 2011. — Т. 2011. — P. 19–22.
- Krdžalić D., Ćatić J., Vrce E., Omićević D. Evaluating the accuracy of the digital elevation models (DEMs) within the territory of Bosnia and Herzegovina // Remote Sens. Appl. Soc. Environ. 2024. N 34. 101187. https://doi.org/10.1016/j.rsase.2024.101187
- Lindsay J. B. Efficient hybrid breachingfilling sink removal methods for flow path enforcement in digitalelevation models // Hydrological Processes. — 2016a. — Vol. 30, no. 6. — P. 846–857.
- Lopez-Vazquez C., Ariza-López F., Global Digital Elevation Model Comparison Criteria: An Evident Need to Consider Their Application // ISPRS Int. J. Geo-Information. 2023. № 12, 337. https://doi.org/10.3390/ijgi12080337
- Martz L. W., Garbrecht J. An outlet breaching algorithm for the treatment of closed depressions in a raster DEM // Computers & Geosciences. — 1999. — Vol. 25, no. 7. — P. 835–844.
- Maune David F. ed. 2007. Digital Elevation Model Technologies and Applications: The DEM Users Manual. 2nd ed. Bethesda, Md: American Society for Photogrammetry and Remote Sensing.
- Meadows M., Jones S., Reinke K. Vertical accuracy assessment of freely available global DEMs (FABDEM, Copernicus DEM, NASADEM, AW3D30 and SRTM) in flood-prone environments // Int. J. Digit. Earth 2024. N 17. 2308734. https://doi.org/10.1080/17538947.2024.2308734
- Mitasova H., Hofierka J., Zlocha M., Iverson, L. R. Modeling topographic potential for erosion and depositing using GIS // Int. J. Geogr. Inf. Syst. 1996. № 10. P. 629–641. https://doi.org/10.1080/0269379960890210.
- Nandam V., Patel P. L. A framework to assess suitability of global digital elevation models for hydrodynamic modelling in data scarce regions // J. Hydrol. 2024. № 630. 130654. https://doi.org/10.1016/j.jhydrol.2024.130654
- USGS EROS Archive — Products Overview URL: https://lta.cr.usgs.gov (application date 01.06.2020)
- Pipaud I., Loibl D., Lehmkuhl F. Evaluation of TanDEM-X elevation data for geomorphological mapping and interpretation in high mountain environments — A case study from SE Tibet, China // Geomorphology. 2015. № 246. P. 232–254.
- Planchon O., Darboux F. A fast, simple and versatile algorithm to fill the depressions of digital elevationmodels // Catena. — 2001. — Vol. 46. — P. 159–176.
- Renard K. G., Foster G. R. Weesies G. A., McCool D. K., Yoder D. C. Predicting Soil Erosion by Water: A Guide to Conservation Planning With the Resived Universal Soil Loss Equation (RUSLE). Washington: U.S. Government Printing Office, 1997. 384 p. https://doi.org/DC0-16-048938-5-65-100
- Soille P. Morphological carving // Pattern Recognition Letters. — 2004. — Vol. 25, no. 5. — P. 543–550.
- Tarboton D. G., Bras R. L., Rodriguez-Iturbe I. On the extraction of channel networks from digital elevation data // Hydrol. Process. 1991.N 5. P. 81–100. https://doi.org/10.1002/hyp.3360050107
- Tran T. N. D., Nguyen B. Q., Vo N. D., Le M. H., Nguyen Q. D., Lakshmi V., Bolten J. D. Quantification of global Digital Elevation Model (DEM) — A case study of the newly released NASADEM for a river basin in Central Vietnam // J. Hydrol. Reg. Stud. 2023. № 45. 101282. https://doi.org/10.1016/j.ejrh.2022.101282
- Van Rompaey A. J. J., Verstraeten G., Van Oost K., Govers G., Poesen J. Modelling mean annual sediment yield using a distributed approach // Earth Surf. Process. Landforms. 2001. № 26. P. 1221–1236. https://doi.org/10.1002/esp.275
- Wischmeier W. H., Smith D. D. Predicting rainfall erosion losses: A guide to conservation planning. Washington: U.S. Government Printing Office, 1978. 67 p.
Supplementary files
