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Abstract. The purpose of this study is to investigate collective dynamics of coupled communities that evolve according to the
population game «Battle of the Sexes». A separate community includes two interacting populations of players of opposite
sex, where each player has one of two possible competing behavior strategies. It is necessary to determine the possibility
of mutual synchronization of oscillations in the number of players adhering to a particular strategy, build a synchronization
region, and also evaluate the dependence of the properties of oscillations on the coupling strength. Methods. In this paper, we
study the system of evolutionary games «Battle of the Sexes» interacting through migration. To simulate the evolutionary
game dynamics we make use of the stochastic Moran process, as well as the Monte Carlo method to sample game trajectories.
Mutual synchronization is defined by the appropriately generalized criteria of frequency and phase locking. Results. It is shown
that the system of coupled evolutionary games «Battle of the Sexes» demonstrates mutual synchronization of oscillations under
sufficiently strong coupling. In particular, oscillation frequencies of two communities get adjusted to each other and begin
to coincide at some interaction parameter, while the oscillations themselves become almost identical. A similar result was
also observed for an ensemble of more than two communities. Conclusion. The dependence of the average frequencies of
community oscillations on the coupling strength was determined, the adjustment of oscillations with an increase in the coupling
strength was demonstrated, thereby showing the possibility of mutual synchronization in the model of coupled evolutionary
games «Battle of the Sexes». The region of frequency synchronization was numerically found.
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Annomayusa. [lens paboThl — UCCIIENAOBATH KOJUICKTUBHYIO TUHAMHKY CUCTEMBI CBSI3aHHBIX COOOIIECCTB, 3BOTIOMUOHUPYFOLIHX
10 IPUHIHUIY MOMYJISIUOHHON Urpsl «buTBa monaos». OTaenbHOE COOOIIECTBO BKIIOYAET B ce0sl IBE B3aMMOJCHCTBYIOLINE
TMIOITYJISIIIMK UTPOKOB IIPOTHBOIOJIOKHOTO TT0JIa, Te KK UTPOK 00IagaeT OMHON U3 IBYX BO3SMOXKHBIX KOHKYPHPYIOIIUX
cTpareruii moeacHus. HeoOXomuMo onpeneuTe BO3MOKHOCTh B3aMMHON CHHXPOHHU3AIMH KOJICOAHHUI YKCIIa HTPOKOB, MPH-
JIEP)KUBAIOIINXCS TOW WM MHOM CTpATervu, MOCTPOUTH 00IaCTh CHHXPOHH3AIINH, & TAKXKE OICHUTh 3aBHCUMOCTb CBOICTB
KOJIEOaHUI OT CHIIBI CBSI3U. Memoovl. B naHHOI paboTe HcclienyeTcst CHCTeMa CBA3aHHBIX MOCPEACTBOM MHTPAIMU dBOJIOIH-
OHHBIX Urp «butea moaoBy. [ MOIETMPOBAHNS SBONIOIMOHHON UIPOBON AWHAMUIKH UCIIOIB3yETCS CTOXaCTUICCKHIIA MpoIece
Mopana, a 11 MHOTOKPaTHOM CUMYJISLMM OTAENbHBIX UIPOBBIX TpaeKTopHuil mpumeHsercs meron Monte-Kapino. s onpene-
JICHUS B3aMMHOM CHHXPOHH3AIIUH HCIIONB3YIOTCS KPUTEPHH 3aXBaTa 4yacTOTHl U (a3bl kojaeOaHuid. Pe3ynvmamut. I1okazaHo,
YTO B CHCTEME CBS3aHHBIX JBOJIOIMOHHBIX WP «BHTBa TONOBY» MPH JOCTATOYHO CHIIHOW CBSI3W HaOIIFOmaeTCs B3aMMHAs
CHHXPOHHU3AIUs KolieOaHuii. B 4acTHOCTH, 4acTOTHI KOJeOaHHU JIBYX COOOIIECTB MOJACTPAUBAIOTCS U HAYMHAIOT COBIAATh MPH
HEKOTOPOM TapaMeTpe B3aMMOJCHUCTBHS, & CAMH KOJIcOAHHs CTAaHOBATCS MPAKTHYECKHA WACHTHYHBIMH. [10M00HBIN pe3yasTar
Habmromaics u 11 ancaMOis 6oJiee 4eM IByX cooOmecTB. 3axatouerue. OnpenencHa 3aBUCUMOCTD CPETHUX YacTOT KoJeOaHui
COOOIIECTB OT CHIIBI CBSI3H, MPOJICMOHCTPHPOBAHA MOJICTPOIKA KOJICOAHUI ¢ YBETHMYCHHEM CHIIbI CBSI3H, TEM CaMbIM IMOKa3aHa
BO3MO)KHOCTh B3aMMHOW CHHXPOHHM3AIMU B MOJECIH CBA3aHHBIX SBOJIOIMOHHBIX UTp «buTBa momos». UnciaeHHO HaiiieHa
00J1aCTh YaCTOTHOM CHHXPOHHU3ALIUH.

Knrouesnvie cnosa: 3BOMONMOHHAS TEOpUs UT'P, UTPOBBIC TPACKTOPUHU, CTOXAaCTUYECKUE KOJ'Ie6aHI/I$I, B3aWMHasl CUHXpOHU3alus.
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Introduction

Synchronization of oscillations is a well-known phenomenon that has been extensively studied
for regular, noisy and chaotic oscillations [1]. It is also ubiquitous in biological systems and populations,
to name synchronization of noisy electrosensitive paddlefish cells [2], between activity in remote human
brain areas [4], between the human cardiovascular and respiratory systems [3], in the neuronal population
model [5], in predator — prey populations [6, 7], and population synchronization in epidemic models [8].

Here we focus on synchronization of evolutionary game oscillations, with the emphasys on a
specific and yet not well-understood case when the population dynamics is (i) essentially discrete
and oscillations emerge due to discreteness (i.e. the population size is finite, and the mean-field
approximation is invalid), and (ii) metastable (i.e. the game fixation occurs on a finite time-scale, so
that oscillations are only transient). We consider a system of coupled communities that evolve according
to the population game «Battle of the Sexes», where individuals may follow one of several behavioral
strategies [9]. In other words, the game models the competition of two strategies for choosing a partner
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and raising offspring in two populations of individuals of the same species, but of the opposite sex
(males and females) [10].

More precisely, individuals from populations of the opposite sex play against each other. Each
player, depending on his strategy and the strategy of its counterpart, receives some payoff reflecting
his total costs and benefits. The evolutionary dynamics consists in repeated rounds of play between
randomly selected males and females. The interaction of players and the update of the populations
composition are described using a stochastic frequency-dependent Moran process [11, 12]. According to
this process, the total size of populations is finite and constant, as a result of which the birth of new
individuals and the death of existing ones occur at the same moment in time.

When the game «Battle of the Sexes» is played by finite populations, asymptotic equilibrium
states are absorbing states (complete dominance of one of the behavioral strategies). Since mutations are
not included in the model, once populations enter the state of absorption, they can no longer get out
of it, and the evolutionary dynamics is completed. Earlier we showed that the game has a non-trivial
transitional dynamics. In particular, it was found that before absorption, stochastic cyclical fluctuations
in the number of players adhering to one or another strategy are observed in the model.

Here we describe and study a system of two or more coupled communities (evolutionary games
«Battle of the Sexes»). If isolated, such communities generate their own transient oscillations with a
frequency determined by the properties of the subsystem. We introduce migration between communities,
and in the case of more than two connected games, consider two topologies (chain and ring structures).

1. Methods

1.1. Model of the game «Battle of the Sexes». «Battle of the Sexes» model [10] describes the
process of population reproduction by means of a game-theoretic approach. Denote the male population
as A and the female population as B. Assume that each population consists of IV individuals, and this
number is constant in time. In each population, there are players (agents) with one of two behavioral
strategies that differ in reproduction and raising offspring. Male categories are defined as «faithful» and
«philanderer», and female — «coy» and «fast». The evolutionary dynamics consists in repeated game
rounds between the chosen particular male and female. Interacting with each other, the players receive
the following payoffs

a1 =1; bi1=—-1 ajp=-1; bia=1 0
ast = —1; bpy =1 am=1; byp=—1]
where agy is the payoff for a male with s € {1,2} strategy interacting with a female with s’ € {1, 2}
strategy. Similarly, the values b;y determine payments for females. A negative payoff means that the
cost to the player exceeds the benefit of the interaction.
At each round of the game, the dynamics is described using the stochastic frequency-dependent
Moran process [11, 12], which determines the rules for choosing players and further updating the
composition of populations. The Moran process consists of three steps.

1. In each population, a player is selected randomly with a probability proportional to the fitness of
the strategies.

2. The chosen pair of players gives birth to two offspring (male and female) that inherit the strategy
of the parent of the same gender.

3. Each offspring replaces an randomly dead individual in the corresponding population.

According to the described process, the population size N remains constant throughout the game,
so the state of each population after some game round m can be described by the number of players
with the first strategy: ¢ males and j females, where 0 < 7, j < IN. Then the state of the game consisting
of two populations is given by a pair of values (i, j).

Bepwununa O. C., Hsanuenxo M. B.
612 W3Bectus By3os. [TH/, 2023, T. 31, Ne 5



As mentioned above, the fitness (reproducibility) of strategies affects the probability of a player
choice. Fitness is determined in terms of average payoffs. The average payoffs of males with the s
strategy and females with the s’ strategy are (2) and (3), respectively

72(5) = an -+ ant =7, @
RE(0) = bra e+ bay 3)
The average payoffs of the entire population of males or females are given as
740, 5) = 7 (7) 5 + 1) @
7(i,9) = mP (i) 2 + B i) ©

Then, for example, the frequency-dependent probability to choose for reproduction in the popula-
tion of males of the player with the first strategy

i 1—w+wnd()

PA. N v
T0D) = N T wemi(,g)

(6)

where 1 — w + wx2 () is the reproductive fitness of male with the first strategy, 1 — w is the baseline
fitness, and the small parameter w is called the selection strength [13]. When w = 0, the probability
of a player choice depends only on the frequency of the strategies. As w increases, the dependence of
fitness on average payoffs becomes more and more significant.

Thus, according to the Moran process, an individual with a (currently) more successful strategy
(that is, with a strategy that has a larger average payoff) will most likely be selected for the game and
further reproduction.

Single game trajectories i(m), j(m),m = 1,2,3... are determined by simulating the Moran
process. For multiple simulation of trajectories, the Monte Carlo approach is used. The game process
starts from random initial conditions g, jo € {1,..., N — 1} and is considered until absorption or during
a limited number of rounds M.

1.2. Determining the frequency and phase of oscillations. Stochastic cyclic oscillations of
i and j are observed in the game «Battle of the Sexes» even that the respective mean field equations
display a stable stationary state [14]. Such oscillations are transient, until a trajectory hits one of the
absorbing boundaries and fixation of strategy happens. At the same time, the considerable duration of
transient oscillations allows for defining their frequency and phase.

The mean oscillation period is defined as

1 1 ny —
(T) = 3 2AThe = 35 20 e, )

r=1 r=1

where (T'), is the mean period of game trajectory r; m;j, and m,, are the first and last time that
trajectory r crossed the secant line j* = N/2 from top to bottom; n, is the number of returns of
the trajectory r to the secant during the observation time M = 500N; R is the number of stochastic
trajectories taken for averaging.

The mean oscillation frequency is then calculated as

2

&=y

(®)
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The instantaneous phase of oscillations of one game trajectory is determined as

O(m) = 2n—— "k | on, )
M1 — My
where mp < m < mgy1, k= 1,2, ... and my, is the time of the k-th top-down crossing of the secant
line j* = N/2.

1.3. System of coupled evolutionary games. We consider a system of coupled communities
«Battle of the Sexes» located in the neighboring, but spacially distinct regions and interacting with each
other through the migration of players. Now a single round of the game consists of two steps. In the
first step, the birth-death Moran process is carried out independently in each community. At the second
step, random players migrate between communities.

The coupling strength 0 < p < 1 between communities determines probability of player migration.
If p = 0, then there is no migration and the communities evolve independently. When p = 1, then the
migration of players between communities occurs on each game round.

At each round, with probability p, only one player can migrate from the population of one
community to the corresponding population of another community. We impose an additional condition
to keep the population size constant throughout the game: if some player migrates from community C
to community Cs, then some player from community Co must migrate to community C'.

Both males and females migrate with the same probability p. However, since the migration
process is random, for some game round, migration can happen to for one of the populations (males or
females only).

We consider non-identical migration-related communities C; and C with the same population
size N but different selection strength w, and explore 1:1 synchronization. The presence of mutual
synchronization is identified by two criteria [1]. First, the region of frequency locking is determined
when the difference between the frequencies of two communities is close to zero

(€1) — (Q2) = 0. (10)
Second criterion, the phase locking condition is checked
lp(m)| = |P1(m) — Pa(m)| < const, (11)

where @(m) is the phase difference (relative phase).

In a stochastic system, the phase difference fluctuates, therefore, the existence of phase synchro-
nization in a statistical sense is indicated by the appearance of a peak in the distribution of the cyclic
relative phase

U (m) = @(m) mod 2. (12)

Synchronization can also be characterized by other quantitative measures [15]. Here we calculate
the first Fourier mode of the distribution (12):

v = 1/{cos U(m))2 + (sin U(m))2, (13)

where brackets denote averaging over time and over game trajectories. If the phases are not synchronized,
then y = 0, and in the case of complete synchronization in a system without noise, Y = 1. In stochastic
systems, y remains close to 1 in the synchronization regime and decreases with loss of synchronization.

We also consider spatially ordered ensembles of more than two coupled «Battle of the Sexes»
communities, taking chains with open and periodic boundary conditions. In both cases, the same coupling
strength p is established between the communities. Synchronization is assessed through the dependences
of the mean frequencies on the coupling strength, more precisely, when they start coinciding.
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2. Results

The transitional dynamics of the game «Battle of the Sexes» demonstrates stochastic cyclical
oscillations in the number of players with the first strategy around the Nash equilibrium state [14].
An example of oscillations in the game with a population size of N = 200 is shown in Fig. 1, a, b.
Within the framework of evolutionary game theory, the Nash equilibrium can be interpreted as a potential
stable point of a dynamic game process [16]. For the considered model, given by the payoff bimatrix (1),
the Nash equilibrium state is (0.5,0.5). In this case the number of players that stick to the first and
second strategies is the same in both populations (males and females) and equals (%, %)

Fig. 1, ¢ shows the quasi-stationary probability density distribution d(i, 7), refering to the transient
dynamics of the game. The distribution is obtained by multiple sampling of stochastic game trajectories
that start from a random point and are simulated during M = 500N rounds. The distribution is
non-unimodal and crater-shaped, centered about the Nash equilibrium.

Amplitude, frequency, and lifetime of oscillations depend on the populations size N and the
selection strength w. The oscillation frequency increases as the selection strength increases (Fig. 2),

200 200 »
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Fig. 1. Transitional dynamics in the game «Battle of the Sexes»: @ — change in the number of players with the first strategy in
the male (z) and female (j) populations over time (m is the number of the game round), the dot denotes the exit of the system
to the absorbing boundary; b — the game trajectory on the plane of quantities (4, j); ¢ — quasi-stationary probability density
distribution d(3, 7); parameters: N = 200, w = 0.3, R = 10® (color online)
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Fig. 2. Dependence of the mean oscillation frequency on the value of the selection strength in the game «Battle of the Sexesy;
parameters: N = 200, R = 10°
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Fig. 3. Frequency synchronization observed in the system of two coupled communities «Battle of the Sexes» C; and Ca:
a — the relative difference of the frequencies of C; and C3 as a function of wsy for a fixed value of wi = 0.3;
b — the synchronization region (Arnold tongue); parameters: N = 200, R = 10 (color online)

for example, in a game with a population size N = 200 the mean frequency for w = 0.3 is (Q) = 0.002,
and for w = 0.4 is (©2) = 0.003. The lifetime of oscillations (the number of oscillation periods before
absorption) also increases with selection strength.

Next, we address a system of migration-coupled communities that evolve according to the rules
of the «Battle of the Sexes» game. We consider two non-identical communities C; and Cy with the
same population size (N7 = Ny = 200) but different selection strength (w; = 0.3, wy varies), which
is equivalent to different natural oscillation frequencies. To determine mutual synchronization, we
calculated the mean observed frequencies of communities (Q) and (Q2), and also investigated the
difference in instantaneous phases @(m) = ®;(m) — P2(m).

The resulting relative frequency difference ((€2;) — (Q2))/(Q1) versus wy for different values
of the coupling strength p are shown in Fig. 3, a. Its approach to zero corresponds to synchronization
(frequency locking). Fig. 3, b shows the synchronization region (Arnold tongue), the absolute value of
relative frequency difference is color coded. Much as for the classical synchronization, the frequency
locking region increases with the coupling strength.

Next, we investigate the dynamics of phases. The distributions of phase difference between
communities are presented in Fig. 4. When the coupling strength is low, the distribution is broad and

1.5 1.5 1.5¢
. 1.0 w10 e 1.0
a & a
=% =B =%

0.5 0.5 0.5

0 0

0O 1 2 3 4 5 6 O0 1 2 3 4 5 6 0O 1 2 3 4 5 6
¢ mod 21 ¢ mod 2n ¢ mod 21

a b c

Fig. 4. The distribution of phase difference between two coupled communities «Battle of the Sexes»: a — p = 0.005;
b—p=0.1; c — p = 0.5; parameters: N = 200, w1 = 0.3, we = 0.32, R = 108
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Fig. 5. Dependence of the quantitative measure of phase synchronization (the first Fourier mode of the distribution of the
cyclic phase difference) on the coupling strength between two communities «Battle of the Sexes»; parameters: N = 200,
wi = 0.3, R = 103 (color online)

close to uniform (Fig. 4, @), typical of desynchronization. With an increase in the coupling strength
(Fig. 4, b, ¢), it manifests a peak, which indicates phase locking.

To quantify phase synchronization, we calculated the first Fourier mode vy of the distribution of the
cyclic phase difference. Different curves in Fig. 5 correspond to different pairs of coupled communities.
Index v is greater for communities with closer values of the selection strength (w; = 0.3, we = 0.32,
red curve), hence closer natural oscillation frequencies. Nevertheless, greater coupling strength (p > 0.3)
provides a sufficiently high synchronization index (y > 0.7) for more different communities (w; = 0.3,
wg = 0.22 and wy = 0.3, wy = 0.38).

Fig. 6 shows examples of oscillations in the number of males with the first strategy in two coupled
communities with w; = 0.3 and wy = 0.32. It can be seen that with an increase in the coupling strength
between the communities, the oscillations begin to adjust, and with a sufficiently large strength, almost
complete synchronization occurs.

While the phase and frequency effects are quite in line with the classical results, the amplitude
and lifetime dependences on coupling and synchronization represent the features, specific to the finite
size evolutionary game. As specific trajectories demonstrate, the amplitude of oscillations decreases
with increasing coupling and the onset of synchronization.

200
150 !
=100
50
0 4 00 1 2 3 4
x10* m x10*
a c

Fig. 6. Change in the number of males with the first strategy in two coupled communities «Battle of the Sexes» over time
(m is the number of the game round): @ — p = 0.005; b — p = 0.1, ¢ — p = 0.5; parameters: N = 200, w; = 0.3, w2 = 0.32
(color online)
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Fig. 8. The lifetime of transient oscillations in the system of
Fig. 7. Quasi-stationary probability density distributions for two coupled communities «Battle of the Sexes» depending
two coupled communities «Battle of the Sexes»; parameters: on the coupling strength; parameters: N = 200, wi = 0.3,
N =200, w; = 0.3, wa = 0.32, R = 10° (color online) wz = 0.32, R = 10° (color online)

Whereas an analytical description this phenomenon is yet unclear, the numerical results can
elucidate it in detail. We constructed quasi-stationary probability density distributions on the set of game
states (4, 7) for a number of coupling strengthes and show its sections at d (%, j) in Fig. 7 for two
coupled communities with w; = 0.3 and wo = 0.32.

First, one observes that the well in the distribution becomes more shallow as the coupling strength
increases to p = 0.005, although synchronization is not reached yet (cf. also Fig. 6, a). The onset of
synchronization at greater p lead to (i) the two distributions becoming almost identical, and (ii) their
radius decreases, indicative of a decrease in the oscillation amplitude.

The effect on the lifetime of oscillations is even more dramatic, as it increases in more that an
order of magnitude (Fig. 8). Even a low coupling strength (p = 0.01), at which synchronization is not
yet observed, increases the lifetime of the transient dynamics by about 6 times compared to a system
without coupling (p = 0). Thus, the spatial migration of individuals protects populations from extinction.
It should also be noted that the lifetime depends on the selection strength w, and synchronization
effectively favors the quicker fixating community to keep on oscillating longer. Even, if extinction
would occur in one of the communities, due to its persistence in the other community both strategies of
behavior can coexist for longer time.

Ensembles of more than two coupled communities «Battle of the Sexes» have also been
investigated. Arrays with two types of boundary conditions were considered, giving a chain and
a ring. In the case of a chain structure, each community (except the first and last) is interacted with
two nearest neighbors. The first and last communities are connected to only one neighbor. In the ring
structure, one realizes periodic boundary conditions by an additional coupling between the first and the
last community.

The results for an ensemble of four communities (C; with w; = 0.28, Cy with we = 0.3, C
with w3 = 0.32 and C4 with wy = 0.34) are shown in Fig. 9. The figure illustrates the dependence of
the mean observed frequencies of communities on the coupling strength, which is the same between
each pair of communities.

Notably, even the strongest coupling strength (p = 0.5) cannot synchronize all four communities
in the chain (Fig. 9, @). In a particular system, a slight coupling allowed communities C5 and Cy to
adjust their rhythms. A further increase in the coupling value led to the synchronization of the three
subsystems (Co, C'3 and Cy), but the oscillation frequency of community C; remained different.
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Fig. 9. Dependence of the observed mean frequency of oscillations in the system of four coupled communities «Battle of
the Sexes» on the coupling strength: @ — chain structure; b — ring structure; parameters: N = 200, wy = 0.28, ws = 0.3,
ws = 0.32, wg =0.34, R = 103 (color online)

Converting it to the ring structure makes it possible to overcome this feature (Fig. 9, b). In this
case, an increase in the coupling strength leads to synchronization of all four communities, despite their
initial frequency detunings.

With an increase in the coupling strength in both structures, the phenomenon of cluster synchro-
nization is observed. For example, in a ring structure, four communities are divided into two subgroups,
called clusters, so that the communities within one cluster oscillate at the same frequency, but the
frequencies of the two clusters differ. In a specific example, clusters C; and Cs are formed, as well
as C3 and Cy4. However, an even greater increase in the coupling strength leads to almost complete
synchronization of communities.

Conclusions

We investigated the mutual synchronization of transient oscillations in the system of discrete
population evolutionary games, coupled through migration. Beside classical manifestations of synchro-
nization, we demonstrated marked alterations in quasi-stationary distributions, amplitude and lifetime
effects.

In particular, for a system of two coupled communities, the frequency and phase locking region
was determined. The great coupling strength allows even considerably different communities to be
synchronized. A similar result was obtained for an ensemble of more than two coupled subsystems.
With an increase in the coupling strength in the ring of mutually connected communities, we observed a
transition from cluster synchronization to an almost complete synchronization. Adjustment of rhythms
also took place in the chain of coupled communities, however, even the strong coupling strength did not
allow all subsystems to oscillate synchronously.

A concluding remark concerns the other types of player migration, that we also addressed in
numerics. In particular, we considered the case when the players with a less successful strategy are more
likely to migrate. There an increase in the coupling strength between communities leads to a more rapid
absorption, leading to the cessation of transient oscillations. In the opposite case, when players with
a more successful strategy are more likely to migrate, the results a more similar to those reported in
the manuscript for the random player migration. However, it should be noted that the synchronization
region, as well as the lifetime of oscillations, become larger than for random migration.

Bepwununa O. C., Heanyenxo M. B.
WzBectus By3oB. [TH], 2023, T. 31, Ne 5 619



The interaction of population communities through spatial migration can be important from an

ecological point of view. Even if, due to random fluctuations, a population from a certain community
is on the verge of extinction, the processes of migration and synchronization support the disappearing
population. Thus, our results show that synchronization is important for maintaining the stability and
coexistence of all phenotypes (game strategies). The conclusions obtained can be used in the study of
biological rhythms of real world populations.
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