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Abstract. The aim of the paper is to obtain a system of nonlinear evolution equations for two coaxial cylindrical shells
containing viscous fluid between them and in the inner shell, as well as numerical modeling of the propagation processes
for nonlinear solitary longitudinal strain waves in these shells. The case when the stress-strain coupling law for the shell
material has a hardening combined nonlinearity in the form of a function with fractional exponent and a quadratic function
is considered. Methods. To formulate the problem of shell hydroelasticity, the Lagrangian—Eulerian approach for recording
the equations of dynamics and boundary conditions is used. The multiscale perturbation method is applied to analyze the
formulated problem. As a result of asymptotic analysis, a system of two evolution equations, which are generalized Schamel—-
Korteweg—de Vries equations, is obtained, and it is shown that, in general, the system requires numerical investigation.
The new difference scheme obtained using the Grobner basis technique is proposed to discretize the system of evolution
equations. Results. The exact solution of the system of evolution equations for the special case of no fluid in the inner shell is
found. Numerical modeling has shown that in the absence of fluid in the inner shell, the solitary deformation waves have
supersonic velocity. In addition, for the above case, it was found that the strain waves in the shells retain their velocity and
amplitude after interaction, i.e., they are solitons. On the other hand, calculations have shown that in the presence of a viscous
fluid in the inner shell, attenuation of strain solitons is observed, and their propagation velocity becomes subsonic.
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Annomayusn. LJers paboTel COCTOUT B TIOCTPOSHUH CHCTEMbI HEIMHEWHBIX 9BOIIONUOHHBIX YPAaBHEHHH JJISI IBYX COOCHBIX
IITHHAPHIECKUX 000JI0UEK, COAECPIKANINX BSI3KYIO )KUAKOCTh MEX/IY HIMHU U BO BHYTPEHHEH 000JI0UKe, a TAKXKE B YHCIICH-
HOM MOJCIIMPOBAHUHU ITPOLECCOB paCcpoOCTPaAaHCHUA HEJIMHEHHBIX YEAUHEHHBIX MTPOAOJIbHBIX BOJIH ued)opMaum/l B JaHHBIX
obonoukax. PaccMoTpeH cirydaii, xorna Juis Matepuaiga o0OJIOYEK 3aKOH CBS3M HANpsDKEHHH W Aedopmaruii uMeeT kKecT-
KyI0 KOMOMHHUPOBAHHYIO HEITMHEIHOCTb B BHJE CTENEHHOH (QYHKIMH C JPOOHBIM ITOKa3aTeleM W KBaApaTUIHON (QYHKIHH.
Memoowi. I mOCTaHOBKHU 33/1a4M TMAPOYIPYTOCTH 000JI0UEK UCIoNb3yeTcs JlarpanxeBo-OinepoBblid MOIXO/ 3alUCH ypaBHe-
HHUI TMHAMUKH ¥ KpaeBbIX ycIoBUH. s aHanmu3a chopMynupoBaHHOM 3a/1a4y IPIMEHEH METO/] ABYXMAaCIITaOHBIX Pa3I0kKEHUH.
B pe3synbprare acHMITOTHYIECKOTO aHAIIH3A TTOTydeHa CHCTEMA JIBYX BOJIOIHOHHBIX yPAaBHEHUH, KOTOPBIE IPEACTABIAIOT COO0H
o0o0ueHHbie ypaBuenus Kopreeera—ne Bpuza—Illamerns, 1 moka3aHo, 4To B o01IeM cilydae cuctema TpeOyeT YMCIEHHOTO
uccaenoBanus. s TUCKpeTH3alK CUCTEMbl YBOJIIOLMOHHBIX YPABHEHUI NPEAIOKEHa HOBas Pa3HOCTHAS CXEMa, IOJIyYCHHas
¢ MCIOJIB30BaHUEM TeXHHKH 0a3ncoB [péOHepa. Pesyrvmamsr. HaliieHO TOYHOE pElICHHE CHCTEMBI SBOJIOLMOHHBIX YPaBHEHHUH
UL 4aCTHOT'O ciIy4asi OTCYTCTBUS JKHJIKOCTH BO BHYTPEHHEH obomnouke. HncneHHOe MOAENUpOBaHUE TT0Ka3ajI0, YTO NPU OTCYT-
CTBHU >KHJKOCTH BO BHYTPEHHEH 000JI0UKe yeJMHEHHbIE BOIHBI Ae(OpMAIUN MMEIOT CBEPX3BYKOBYIO CKOpocTh. Kpome Toro,
JUIsL YKa3aHHOTO CITydasl yCTaHOBIECHO, YTO BOJHBI Je(opMaIy B 000JI0UKaX COXPAHIIOT CBOIO CKOPOCTh M aMIUIUTYy HOCIIE
B3aMOJCUCTBUS, TO €CTh IPEICTABIAIOT co00i conuToHbl. C Ipyroil CTOPOHBI, PacueThl MOKA3aIM, YTO MIPU HAJMYUM BA3KON
JKUJIKOCTH BO BHYTpPEHHEH 000JI04Ke HaONIONaeTcsl 3aTyXaHHe COJIMTOHOB Je(OpMalMH, a CKOPOCTh HX PAaCIpPOCTPAHEHUS
CTAHOBUTCS J103BYKOBOI.
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Brazooapnocmu. Pabota BhinonHeHa npu noxpaepikke Poccuiickoro Hayunoro gonna (PH®) B cooTBETCTBHH C IIPOEKTOM
Ne 23-29-00140.

Jna yumupoeanua: Mozunesuy JI. U., bnunxos FO. A., Ilonosa E. B., Ilonos B. C. YenuHeHHble BOJIHBI JeGopMalui B AByX
KOAKCHAJIBHBIX 000JIOYKAaxX W3 MaTepHana ¢ KOMOMHUPOBAHHOH HEIMHEHHOCTBIO, 00pA3yIOMINX CTEHKH KaHAJOB KOJbLe-
BOTO U KpPYIJIOTO CEUYCHHS, 3AIIOJIHCHHBIX BS3KOW XHIAKOCTHIO // M3BecTus By3oB. ITH/I. 2024. T. 32, Ne 4. C. 521-540.
DOI: 10.18500/0869-6632-003115. EDN: ERSUZY.

Cmamuws onybnuxosana na ycaosusx Creative Commons Attribution License (CC-BY 4.0).

Introduction

The studies of the deformation waves’ propagation in elastic structures involve the formulation
and solution of wave dynamics problems for such models of elastic elements as a rod, a plate, and a
shell. Now, such problems in the linear formulation are well enough studied [1]. However, modern
elastic structures can be made of materials with nonlinear physical properties, and work beyond the
linear theory of elasticity, as well. Therefore, the problems of studying the evolution of deformation
waves for nonlinear computational models of elastic elements and, in particular, the possibility of
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the formation of solitary nonlinear waves (solitons) in them that retain their velocity and shape are
relevant [2]. In [3], the Korteweg—de Vries equation for a nonlinear-elastic rod was derived and the
possibility of a solitary longitudinal strain wave (a strain soliton) in it was first substantiated. Later, the
Korteweg—de Vries—Burgers equation for a viscoelastic rod and a plate describing the evolution of strain
solitons in these elastic elements was obtained in [4]. The reviews of the main papers on theoretical and
experimental studies of the evolution of solitary strain waves in nonlinear rods are given in [5,6], and in
the review [7], where, in addition, the studies of solitary strain waves in plates and shells are presented.
Note that the studies on nonlinear wave dynamics of shells are much less than for rods and plates, and
we present below a number of studies for shells that were not included in these reviews. The evolution
equation describing the propagation of nonlinear longitudinal strain waves in a cylindrical Kirchhoff-
Love type shell made of a linear viscoelastic material and operating under the condition of neglecting
rotational inertia was obtained in [8]. It is shown that that equation is the Kadomtsev—Petviashvili—
Burgers equation. In [9], the results of full-scale experiments on excitation, detection, and the study of
the propagation of a volumetric strain soliton in a shell made of polymethyl methacrylate are presented.
The authors also proposed an axisymmetric model of the evolution of volume longitudinal waves in a
nonlinear-elastic cylindrical shell made of Murnaghan material. As a simplification in that model, torsion
and bending are neglected. The numerical simulation of the strain soliton evolution in a nonlinearly
elastic cylindrical shell with varying cross-section and physical properties of the material on the bases
of the development of this model was carried out in [10]. In [11, 12] the evolution of axisymmetric
longitudinal strain waves in a Kirchhoff—Love cylindrical shell surrounded by a generalized nonlinear-
elastic medium, which in particular cases reduces to the Winkler, Pasternak, and Hetenyi models, is
investigated. A nonlinear evolution equation of the sixth order modeling the propagation of these
waves is obtained, and the physical realizability of its partial exact solutions in the form of periodic
and solitary waves is discussed. The study of solitary strain waves in ribbed cylindrical shells made
of incompressible material with physical softening nonlinearity, when the relationship between stress
intensity and strain intensity is given in the form of a power law with a fractional exponent, is presented
in [13,14]. In [13], the authors use the structural anisotropy method to describe the presence of a system
of orthogonal stiffeners rids at the ribreinforced shell, while in [14] they consider a shell with stiffeners
ribs in the form of internal stringers, which are described as beams in contact with its skin. In the first
of these papers [13], the evolutionary equation of longitudinal deformation waves was obtained for the
shell, which is the generalized Schamel equation, and in the second one [14], an evolutionary equation
generalizing the Schamel-Ostrovsky equation was derived. It is shown that these equations have partial
exact solutions in the form of nonlinear solitary longitudinal deformation waves.

Cylindrical shells are used in various engineering structures, and in particular, in pipeline systems
for transportation of fluids. Therefore, the problems of studying the interaction of shells with the
liquid filling them are relevant and associated with the consideration of hydroelasticity problems.
The first studies of wave processes in elastic shell-fluid systems were carried out in a linear formulation.
The papers [15, 16] should be noted among such investigations. Reference [15], the axisymmetric wave
motion of incompressible fluid in a thin elastic cylindrical tube was investigated and the propagation
velocity of the fluid pressure wave was determined for the case of considering the inertia of wall
motion and the forces of viscous friction of the fluid. In [16] the wave pulsating motion of viscous
incompressible fluid in a thin-walled elastic tube of circular cross-section was investigated in relation
to the study of blood motion in vessels. The current state of the research in the field of hydroelasticity
of cylindrical shells is given in [17-19]. It should be noted that most of the studies consider an ideal
fluid and discuss problems of linear wave processes in shells. Below we present a number of works
in which the nonlinear questions have been studied. In [20,21] the propagation of nonlinear solitary
waves in a geometrically nonlinear cylindrical shell filled with an ideal incompressible fluid was studied.
The axisymmetric problem of hydroelasticity was formulated, and using its asymptotic analysis
the Korteweg—de Vries equation for the shell deflection was obtained. The numerical examples
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of calculations of the evolution of solitary waves in a shell are presented for the following cases: absence
of fluid in it, its complete filling with fluid, and the motion in it of a stationary fluid flow with constant
velocity. In [22], an axisymmetric hydroelastic problem is formulated for a geometrically nonlinear
cylindrical shell with structural damping, filled with a viscous incompressible fluid and surrounded by a
generalized Vlasov—Leontiev medium, in which linear and cubic reactions to longitudinal displacement
are presented. Using the perturbation method and considering the creeping motion of the fluid in the
framework of the hydrodynamic theory of lubrication, an evolutionary integro-differential equation for
longitudinal deformation waves in the shell generalizing the Korteweg—de Vries equation is obtained.
The numerical solution of this equation was carried out, which allowed to evaluate the effects of fluid,
structural damping and surrounding elastic medium on the evolution of nonlinear solitary strain waves.
In [23,24], longitudinal solitary strain waves in two coaxial shells with a viscous fluid between them are
investigated. In [23], the inertia of viscous fluid motion in an annular gap is taken into account, and a
system of two generalized modified Korteweg—de Vries—Burgers equations is obtained and numerically
investigated for the shells with structural damping, whose material has a physical law with cubic
nonlinearity and is surrounded by a Winkler elastic medium. In [24], the motion of a viscous fluid in an
annular gap is considered as creeping. The authors obtained and numerically investigated the system of
two generalized Schamel equations for cylindrical shells, the material of which has a law of dependence
of stress on strain and strain intensity with a nonlinear term having a fractional exponent. This study is
further developed in [25] by the case of filling the inner shell with viscous fluid and considering the inertia
of fluid motion in the annular gap between the shells and the circular channel formed by the inner shell.

The proposed study is aimed at studying the evolution of solitary strain waves in two coaxial
cylindrical shells, which material has a combined nonlinear physical law of stress-strain coupling,
forming annular and circular channels filled with viscous incompressible fluid.

1. Derivation of the shell dynamics equations,
the hydroelasticity problem formulation

Let us consider two cylindrical shells made of the same material and having a common longitudinal
axis of symmetry. It is assumed that the entire space in the inner shell and between the shells is filled
with viscous fluid (see Fig. 1). While studying the wave process in the shells, we will accept that they
are infinitely long, i. e., exclude from consideration the reflection of waves from the shells’ ends.

Along the symmetry axis, we direct the
x-axis of the Cartesian coordinate system xyz,
the center of which is located at the point O
of an arbitrary (initial) cross-section. The center
of the cylindrical coordinate system r0x is at
the same point. Let us study an axisymmetric
wave process the evolution of which occurs in the
positive direction of the z-axis. The radius of the
inner surface of the outer shell is R, and Ry is
the radius of the outer surface of the inner shell,
then in the unperturbed state the gap between the
shells is 6 = Ry — R». The notation of thickness
for the i-th shell as h[(f), and R for the radius
of its middle surface is introduced, where i = 1
corresponds to the outer and ¢ = 2 to the inner
shell. Next, we will designate as the upper index
Fig. 1 1 the parameters corresponding to the i-th shell.
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Let us assume that the shells satisfy the Kirghoff—Love hypotheses and write the equations of
their dynamics according to [26] considering the load on the shells from the side of the viscous fluid
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The following notations are adopted in equations (1): Méi) is the bending moment in the middle
surface element of the ¢-th shell, Néi), Néi) are the normal forces, along the corresponding axes x and 0,
of the middle surface element of the i-th shell, W9 is the displacement of the middle surface element
along the normal (deflection) of the i-th shell, the positive direction of which is taken to the center of

curvature of the shell, U(Y) — longitudinal displacement of the middle surface element of the i-th shell,

qg(f), @y, are the tangential and normal stresses of the viscous fluid between the shells, g5, ¢S are the

tangential and normal stresses of the viscous fluid filling the inner shell, ¢ is the time, pg is the density
of the shell material. .
Moment Méz) and normal forces Néz), Née) are defined as [26]

MO = / " ol 2dz, NG = / " oldz, N = / " ol @)
—h§) /2 —~h) /2 —h( /2

where o&i), Oéi) are the normal stresses, along the corresponding = and 0 axes, in the element of the i-th
shell, z is the local coordinate normal to the middle surface of the i-th shell.

To represent equations (1) in displacements, it is necessary to specify the physical law relating
stresses and deformations in the shell material. In the case of physically nonlinear material, to
approximate experimentally determined diagrams of its deformation, nonlinear power dependences
are used: quadratic, cubic or fraction exponents, as well as their combinations [27]. For example,
the case of the physical law with softening fractional exponent or combined softening quadratic and
fractional exponent nonlinearity was studied in [13, 14] for synthetic incompressible materials based
on epoxy resins. Such an approximation allows to reflect the fact of limitation of stress growth with
strain growth. In the proposed study, we use an approximation of a physical law with the hardening
combined nonlinearity in the form of sum quadratic and fractional exponent function. This allows us to
reflect the effect of material hardening, i.e. the presence of nonlinear stress growth with strain growth in
stress-strain diagrams. For example, such behavior is characteristic of biotissues such as skin and blood
vessels of animals and human circulatory systems [28]. According to the above, let us write down the
relationship between the components of the stress tensor o,, g and the components of the strain tensor
€z, €9 and strain intensity €, according to [29] as follows

1 () 14 50 ),
o) = - fug :(Mosg) + 69) {1 + %65}»)1/2 * %5&2)” ’ 3)
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In expressions (3) E is Young’s modulus, ug is Poisson’s ratio of the shell material; m, mo
are considered as positive material constants having the dimension of stresses and determined from
tensile-compression experiments of nonlinear-elastic shell material [30]. The coefficients w;, uo reflect
the fact of compressibility of the material, which is characteristic for biotissues [28]. If we consider
incompressible material, for example, synthetic materials based on epoxy resins, we can put o = 1/2
(in this case iy = —ug = 1) and m < 0, me = 0 or m < 0, mo < 0 similarly [13, 14].

We assume that the deformations and elastic displacements of the i-th shell are related to each
other as [25]

NEF-1940) 921 (@) . w @ w @ . .
(i) _ _ @__» VT @)y )
Ex P voRt B RO A R@R’ hy'/2 <z < hy' /2. 4)
Let us substitute (3), (4) into (2), and after that into (1), bearing in mind [25], where the validity
of considering the intensity of deformations on the shell’s middle surface, i.e. z = 0, was shown.
As a result, we obtain the equations of dynamics of the considered coaxial shells, which material has a
physical law with combined fractional-quadratic nonlinearity, written in displacements
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Note that in (1), (5) the right-hand sides, i. e., the load on the shells, represent the tangential and
normal stresses of a viscous incompressible fluid written in the Lagrangian—FEulerian approach [31].
The load is carried on the undisturbed middle surfaces of the shells, as is common in hydroelasticity
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problems [32]. The expressions for qg(f), qn and q;“", q

shells are written in the Euler approach as [25]

cir

" on the unperturbed middle surfaces of the

qg(ci) = —pv Vs + OV, at r = R\(,i), qff) =—-p+ 2pvavr at r = Rsi). (6)
or ox or

Here we have in mind that that expressions for ¢, ¢&" coincide with (6) at i = 2. In the case the
physical properties of the fluid in the annular gap and the inner shell are different, then assuming in (6)
1 = 2, we also denote the density and kinematic viscosity of the fluid in the inner shell as p. and v..

To determine (6) together with (5) it is necessary to consider the equations of dynamics of a
viscous incompressible fluid between the shells and in the inner shell, which for the axisymmetric case

have the form [33]

ot " or “ox  poOr or2 ror  0x2 r?

8Vx+V8Vx+V8Vx+l@_V 82Vx+18Vx+32Vx 10
ot " or To0r  poOxr orz r or ox? )’

()
OV

ror (rV2) + ox

=0.

where V, V,. are the projections of the fluid velocity on the axes of the cylindrical coordinate system, p
is the pressure in the fluid, p is the fluid density, v is the kinematic viscosity coefficient.

Let us supplement (7) with boundary no-slip conditions at the shell’s surfaces for the fluid
between the shells (annular cross-section channel) and in the inner shell (circular cross-section channel).
For the channel of annular cross-section, these conditions have the following form

v, + U0 %Vw _ W(i)aaV% _ ag o
i r t
(8)
. A (@) ,
V’T’_FU(Z)?_W(")%W:—({?I; atT‘:Ri—W(Z), Z:1,2
T r

For the channel of circular cross-section, we use (8) at r = (Ri — h(()i)) — W and i = 2.

In addition, we use the conditions for the velocity components at the symmetry axis of the viscous fluid
in the inner shell, which are justified and formulated in [25] by Mogilevich L. 1. in the following form

OV
rV, =0, r =0 at r=0. 9)
or

2. Asymptotic analysis of the hydroelasticity problem,
system of evolution equations

Considering the wave process in shells, we assume that the following relations take place

;Lz(({i)) =ex 1, R;f =0 <51/2) , :{S =0(1),
| " (10)
“lm];g)) = 0(1), % = 0(1), % ) (5—1/2) ,
and use dimensionless variables
W) = wmu:(,f), U = umugi), ¥ =zx/l, t"=tey/l, r*= ’I“/R(i), (1D
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where ¢, = \/ E/(po(1 —ud)) is the sound speed in the shell material, [ is the wavelength taken as

a characteristic linear scale, u,,, w,, are characteristic scales of elastic displacements of shells, ¢ is a
small parameter of the problem.

Let us analyze equations (5) by perturbation method [34] considering asymptotic expansions of
elastic displacement functions of shells

W — a2 D ) (12
and introducing new independent variables & and t©

E=a* — /1 —udt, v=ce?" (13)

Writing (5) in dimensionless form taking into account (10)—(13) and restricting to the first term
in (12) we have the system (zero approximation by ¢)
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and restricting by the first two terms in (12) and bearing in mind the second equation (14), we obtain
the system (first approximation by ¢)

9 ou') » m V3 1/2 ” ou 3/2
o 11 G m 1— 2 2 1
i <M0 (Mo 5 u31> +% <1 +uo) (1 —ud) (w1 + papo + pipd) ( P ) +

(i) \ 2 9 (i)
my yp V3 172 [ Ouy 0%l
B T (1 —ud) (w1 + pouo + pipg) < +2./1-u _

O 0 9EdT

l . ,

- _ (2) s cir
- 75 (@ 1) . (15)

£/2pohg ( ) RO
ouy) o 1 (RO) 9%l
ho=ge — i — o (L=w0) 7 | = | T =
R o . " .
= — 7(1) ((—1)Z 1(]7(-3)_'_(2_1)(]” ) s 22172.
63/2p0h0 C%

R(@)

Let us consider the system (14) and substitute the deflection from the second equation into
the first one, resulting in the identity. Hence, the longitudinal displacement is an arbitrary function.
In addition, we note that the first term of the expansion (12) corresponds to a linear wave process
evolving at the sound speed in the shell material. The consideration of the second term allows to obtain
the additive due to a nonlinear wave process.
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Considering the system (15) we exclude from it w11, u3; as a result we obtain

2l m (V3 12 5 ov1/4 |0ull) 2 o?ul!
o 2 /1=
(i) 52 4
m2 J/2 V3 V3 1_ 1/2 uig 0 U1o 131 — 13 9'uly _
FES TV uZ (w1 + pono + uiug) 5 oz T 5 oe!
. o ((=1)—1 n —1)gcir
- ! L 14 4 (i—1)gfr — e/ (Dl +G=Da) |y
w2 23/20. 5@ 02 |7 0&
2+/1 ug e / pgho < RG)
(16)

The equations of system (16) are the generalizations of the Schamel-Korteweg—de Vries equation
for longitudinal deformation E)ugg /OE. Note that the exclusion of the fluid between the shells and in

the inner shell is equivalent to assuming qé) = gn = ¢&" = ¢“" = 0. In this case, the system (16)
decomposes into two independent Schamel-Korteweg—de Vries equations for the outer and inner shells.

To determine ¢, q,, ¢S, ¢S, we analyze asymptotically the equations of fluid dynamics (7)—(9)
between the shells and in the inner shell similarly [25]. For this purpose, for the fluid between the shells

(annular channel) we introduce dimensionless variables of the following form

(%)

)0 r-RY % pveolho” p 19y

_ p(@®c _p@®c ] *_ 2 =
Vi = hy lvr, Ve = hy 6%’ T 5 , t lt, T

and for the fluid in the inner shell (circular channel) we use the following dimensionless variables

(4)

0
7T P="pas 1 (8)

x _ pveolh
l ) p - 63

*

) Co * r Co * 1 _ PchCOlh

c
190, rf=—x, t'=-—

(4 (i
V. = hy 7 Ve =hy R@ v

We assume that in the considered formulation for the annular channel the following relations take
place

_ 5 ap _ h(()i) _1)2 h(()i) _ h(()i) _ 514 O _ 3n
w—w—5 ) )\_T_E ) R(i)_g’ T_E ) 7_5 ) (19)
and for the channel of circular cross-section we suppose
R(Q) L h(l)
L= /4 — o _
l _wc_o(e ) he = 2oy = . (20)

Then passing in (6)—(9) to dimensionless variables (17) or (18) taking into account (19) or (20),
for channels of the corresponding cross-section, we consider the following asymptotic expansions

P=P°+2P 4w =04 eVl 4 v, =0Vl 4 (21)

Restricting in (21) by the first term, we obtain linearized problems of viscous fluid dynamics in
the corresponding channel.
For the channel of annular cross-section, the hydrodynamic equations will take the form of

opY 88co oY 9PV 9% ol ol
— e T — x r T _ 0 22
o~ TN o ow  or? o omr 2)
with boundary conditions
(1) (2)
’Ug = _agt3* 5 Ug = 0 at T* = 17 US = _85-[;3* 5 Ug = O at T* = 0 (23)

Mozeunesuy JI. 1., bBrunxos IO. A., Ilonosa E. B., I[lonos B. C.
WzBectus By3oB. [TH], 2024, T. 32, Ne 4 529



For the channel of circular cross-section the hydrodynamic equations will be written as

9P Rsco 000 oPY 1 0 oY 1 0 0 oY
— o— €T — * X , _ * €T — 0’ 24
or* ¥ Ve Ot*  Ox*  r*or* (r 87“*) r* Or* (ror) + ox* @4
with boundary conditions
0 (2) (2)
r*od = r* g:f =0 at r* =0, )= —agtg* ;o) = agtl* at r* =1. (25)

The expressions for qg(f), In» ¢S, ¢ will be written as

i he o
qa(?) = _pV 062 0 ar*7
@ (20)
lhy
qn:—pvc%P0 at ¥ =1 (for i=1) or (fori =2) at r* =0,
cir Ve 2% cir__k Ve 2 p0 *
dy = )\c R(2)00 PcCo 8r*’ 4n = wc R(2)CO chOP atr” = 1. (27)

The solution of problems (22)—(25) by the iteration method was carried out in [25] and the
pressure P° and velocity gradients 9v0/9r* were determined. The expressions for these quantities in
the annular channel are as follows

(1) (2)
_ M _ @) _6 Ouzy _ Ou
PO _/ [12,/1;% (u30 —ugo) — 2 Re (1) ( 8%0 ~ 8:%0 )] d,
31}2 ~ 2 —1) |6y/1— 2 ( 1 (2)) B Re (1 B 2) 8u:(,’:(l)) B ﬁug%)
o " \V Uo {Uzp — Uz 10 W BE BE

consequently

_ 2%
AR
(28)

, Re

o0 - ey 6 b (00 ou®
a%[lzm(ugo—%)—g{eu—w e ok )]

vy /12w _ @) _ Re o) [Ousy  Ouly (29)
ar* r*:1_6 1_“0(“30 _”30) ~ o (1~ w) 9t oe |

oY _ ol

or* |,y or |,y

For a channel of circular cross-section in [25] it is defined that
or° / 5 (2) 8u(1%) 1 RO 8u§%) GQU%) 5
& 1_“0[8<2u3°_ e )"V e e JVITIO)
0vy B 2 (2) 8u%) 1 R®g¢ 8u§20) ﬁzu%) 5
=4/1—uj [4 <2u30 9E Gwc " 2 Bt 9E2 \/1—=ugl| -

(30)

*
or r*=1 ¢

Then, using ugg = uoﬁu% /OE (the second equation of (14)), (26)—(30), considering the smallness

of parameters 1, A, J¢, Ac and assuming RW = R® ~ R, h(()l) = h((f) ~ hg, we determine the right
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parts of the equations system (16) and obtain the system of evolutionary equations of the following form

12 D2 1
8%%) ms v3 1/4 ou 0%*u
V=W 2 10 10
00t + E4 Mo\ 1 o (w1 + u2to + pipg) P 72 +
VS a2 {8 G+ v+ ) Ouyg) 9Puly) | ugv/T g 'uy) _
Bl rw) ' ) e o 7 ol

(Y outy _ duip (115
% poho Regel/2 \ & OE Ot 2R

1 2
1 Re /1 — u2 82“50) _ 82“&0) 1— 15
10 0\ og2 0E2? 12 uoR

(31)
1/2 2) 1/2 (2)
82u%) m3 o[ V3 o\ 1/4 8u§0 *uyy
9EO + 1 I —uf m (Ml + Halo + MlMo) e DE2 +

(2) 52,,(2) 2 7 o4, ,(2)

mav3 1/2 2 n1/2 Quyy O%uyg g/ 1 —ug 0%ugg

_M2ve 12 /1 —
E(l+wmo) 15 (1 + patto + prg) e 0g2 2 OE4

_ g2 Pl v <R>3 duty  duly (1 - 16> -
%00ho Regel/? \ 8 OE OE 2R
1 (0% 92y 19
0 1”0< g2~ oz )\ 2wR
1 l Ve 2 2 au(2)
- oA /1 — 21 —2 10 _
2,/1— 2 e'?pohocy {Rcop 0 ol ol 08

R ,1 0%uly)
—Tpechs (1— 1) [(1—200)” + 1208 S b

Note that the obtained system, in the case of exclusion of the fluid from consideration, i. e., when
the right-hand sides are equal to zero, and when mo = 0, decomposes into two independent Schamel
equations. These equations for the case of incompressible material, when o = 1/2, ap = —ug =1,
and m < 0 coincide with the equation obtained in [14], for the shell with internal stringers and skin
made of incompressible material with softening fractional physical nonlinearity, with the height of
stringers equal to zero.

3. Numerical modeling of the solitary strain waves evolution in coaxial shells

Let us represent the system of evolution equations (31) in the form of

1/2
ol bl e+ o0 (¢ - 9) o1 (o - i) =0,

2
oy + 601D @2 + iy + (32)

o0 (62 = 00) o1 (42 — ) + 026® — oag?) =

o) + 60 ’cp(”

o7 + 6ag ‘cp(z’)‘l/
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by introducing the following notations

duly) ) duig @ o ol (RY v 1 ° )
_ _ S R T ALy 4 Ry U N
RGN c39”, =i, €21, 0o = 6ug <6> dcp e1/2 < QMOR> ’

2 2
pd (R L V1—ug 0 1 pel Ve 5 1
—p2 PO () L VAW (O Ly
7 0h0he (6) el2 10 2wk ) @20 %2 pohg S2Reg 2 L T M)

pcR 1 \/1—u0 [

poho et/2 12

C1
03 = — 2up)” + 12u3} o (33)

where

2
13 m 1
BT I ngel/? 1/2 n1/d |
[ 2287 (VB/(1 4 10)) 7 (1 + pamto + pand)

/3 1/2
_ 03 m2 12 VO 1/2
C1 3% 553 T+u (M1 + Uolp + MlMo)

_eseims 1 2 V3 9\1/2
¢ e me u01+uo(u1+u2uo+muo) :

The subscript letters in the system (32) denotes the corresponding partial derivative, and the
system describes the evolution of longitudinal nonlinear deformation waves in the considered shells.
If we put ag = 0, we pass to the system of generalized Korteweg—de Vries equations, at a; = 0 we
obtain the system of generalized Schamel equations, and at ag = a; = 1 we obtain the system of
generalized Schamel-Korteweg—de Vries equations.

In the general case, system (32) has no exact solution and requires numerical solution. However,
we note that in the special case when the fluid in the inner shell is excluded from consideration, i.e.,
when o2 = 03 = 0, the system of equations (32) has an exact solution in the form of a solitary wave

-2
25 2
oW (t,m) = @ (t,n) = ok (ao + /0 + - k2arch(k(n - 4k‘2t))) : (34)

In this solution, k is the wave number, which is arbitrary. The above exact solution can be used
as an initial condition in the numerical solution of the system of evolution equations (32) by assuming
t = 0 in (34) and taking 09 = a; = 1. In this approach, the following options can be considered:

— at the initial moment of time, the solitary wave with the same wave number is excited in each of

the shells
—2
25 25
oM (0,1) = 9@ (0,m) = i (1 +4/1+ 8/€2ch(kn)> ; (35)

— at the initial moment of time the solitary wave is excited only in the outer shell

-2
2 )
¢ (0,m) = 15164 (1 +4/1+ ;chh(kn)> . ?(0,m) =0. (36)
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In addition, we can consider the excitation at the initial time moment of two waves with different
wave numbers, i.e., with different velocities and amplitudes, in each of the shells. In this case, the initial
conditions for the first solitary wave in the outer and inner shells are given as

-2
25 25
wm@m:dWmm:4%(Hwh+8%m%m>, (37)

and for the second wave in the outer and inner shells we set in the form

-2
25 25
wmmm=¢W&m=4%<Hwh+8%m@m>- (38)

Here k1, ko are the wave numbers corresponding to the first and second solitary waves excited in each
of the shells.

To realize the numerical solution for the system of nonlinear evolution equations (32), we used
the approach of generating new difference schemes for discretization of partial derivative equations
using the Grobner basis technique [35,36]. The sequence of obtaining the difference scheme, checking
its adequacy and stability is similar to [25], and the obtained new difference scheme for the system of
generalized Schamel-Korteweg—de Vries equations (32), i.e., when ag = a; = 1, has the following
form

1yn+1 1)n 1)3/2n+t 1)3/2n+t 1)3/2" 1)3/2"
Y Y I ) S AT
+4 +
T 4h
1 2"+1 1 2"+1 1 2m 1 2mn 1 n+1 1 n+1 1 n+1 1 n+1
X 3(u( T @ 07 X W 2T o )j_2)+
4h 4h3
1) 1) 1) 1" 1n+1 1) 2n+1 2)n
X @D, 2™ 2 O . GO0
4h3 2 2
1 n+1 1 n+1 K 1" 2 n+1 2 n+1 2)n 2\n
By @O @0 ) W @@ @) .
! 4h 4h -
(39)
9+l 2yn 9)3/2nF! 9)3/2n+! 2)3/2" 2)3/2"
O O @Y @ @ @
+4 +
T 4h
2 2n+1 2 2n+1 2 2m 2 2mn 2 n+1 2 n+1 2 n+1 2 n+1
L ARV WYY C R . W — 2@ 4 2@ >H)+
4h 4h3
2\n 2\n 2\n 2\n 277,+1 2)n 1n+1 1"
. W2 o™ @) . a0
4h3 2 2
2n+1 2n+1 2)n 2)n 1n+1 1n+1 1) 1)
» @0 a0 @ —u® ) @ =l @, ) X
! 4h 4h
2n+1 2)n 2n+1 2n+1 2\n 2)n
o, ' )j + 2 )j . (u( )j+l _ )j_l) + (u( )]+1 _ )j_l) .
2 4h ’
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Here we denote the grid mesh steps by T = ¢,,41 — t,,h = 141 — n; and introduce the grid functions
u§1)" = oM (tn,m;) ,ug-Q)n = @@ (t,,m;), where @) (¢,,m;), @@ (,,n;) are the grid values of the
functions ™) (¢, ), 9 (¢, 7).

The software implementation of the difference scheme (39) requires linearization of the nonlinear
grid power functions with exponent 3/2 and 2 for the next time layer. To implement this procedure, the
following computational relations are proposed

3/2 3/2 3/2 3/2 1/2 1/2 1/2 3/2
Vi =Via v v = (Vk{i-l_vk/ ) (" v +Vk)+\’k/ =

1/2 1/2
(12 12\ [ 1)2 1/2 <Vk+1 TV Ve V’“) 3/2
= (Vk+1 Vi ) ( Viyr TV ) V12 1/2 TVE R
Vip1 TV
3 3 1
~ (Vpr1 — Vi) = 5Vk 1/2 +v 3/2 5"1143/2Vk+1 - 5\/2/2,

Vi1 =Vigr — VetV = (Verr — Vi) (Vi1 + Vi) +VE & (Ves1 — Vi) 2V Vi = 2Vt — Vi (40)

Using the difference scheme (39) with linearization by (40) the algorithm of numerical solution
in Python programming language with the help of SciPy package (htt://scipy.org) has been implemented.
The computational experiments on modeling the processes of propagation of solitary waves in the
considered shells under the initial conditions of the form (35)-(38) was carried out. In the course of
modeling, the following cases were considered: filling with fluid only the annular channel between the
shells (equivalent to assuming o2 = o3 = 0); filling with viscous fluid the annular channel between the
shells and the inner shell. In addition, we considered the case of incompressible shells material when the
inner shell and the annular channel between the shells are filled with viscous fluid. To do this, in (33)
we took p = 1/2 and obtained, o2 = 0, and also assumed that o3 = 0.4.

The results of the calculations are shown in Figs. 2-7, namely:

— the evolution of solitary strain waves in the shells for the case o9 = 1, 61 = 0.2, 03 = 03 =0
(absence of fluid in the inner shell) when a wave of the form (35) with k£ = 0.2 is excited at the
initial moment of time in each of the shells (see Fig. 2);

— the evolution of solitary strain waves in the shells for the case og =1, 01 = 0.2, 09 =03 =0
(absence of fluid in the inner shell) when a wave of the form (36) with £ = 0.2 is excited at the
initial moment of time in the outer shell (see Fig. 3);

0.0025 : = 0.0025 : 0

[ t=86.25 t=286.25

0.0020 t=172.50 0.0020 t=172.50

—t=258.75 —1=258.75

~ 0.0015 t=34500( 5 0.0015 £=345.00
©0.0010 ©0.0010
0.0005 0.0005
0 0

40 20 0 20 40 60 80 100 40 20 0 20 40 60 80 100

n n

Fig. 2. The results of numerical solution of the system (32) at oo = 1, 01 = 0.2, 02 = 03 = 0 with initial conditions (35)
with wave number k£ = 0.2 (color online)
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~80 —60 —40 —20 0 20 40 60 80
n

0.0025
0.0020
o 0.0015
20.0010
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—1t=0
1=86.25

—1=172.50]

— 1=258.75
t=345.00]

0

————

~80 —60 —40 —20 (;)1 20 40 60 80

Fig. 3. The results of numerical solution of the system (32) at 0o = 1, 01 = 0.2, 02 = 03 = 0 with initial conditions (36)

with wave number k£ = 0.2 (color online)
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Fig. 4. The results of numerical solution of the system (32) at 0o = 1, 01 = 0.2, 02 = 03 = 0 with initial conditions of the
form (37), (38): condition (37) with wave number k£ = 0.225 and initial value 1 = —50, condition (38) with wave number
k = 0.2 and initial value 1 = 0 (color online)
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n n

Fig. 5. The results of numerical solution of the system (32) at oo = 1, 01 = 0.2, 02 = 0.2, 03 = 0.4 with initial conditions
(35) with wave number k£ = 0.2 (color online)

— the evolution of solitary deformation waves with different amplitudes and velocities in each shell
for the case op = 1, 61 = 0.2, 02 = 03 = 0 (no fluid in the inner shell) when two waves of the
form (37), (38) are excited at the initial moment of time in each shell, (the first wave (37) with
k1 = 0.225 and initial value of the spatial variable 1 = —50, and the second wave (38) with
ko = 0.2 and initial n = 0) (see Fig. 4);

— the evolution of solitary strain waves in the shells for the case op = 1, 01 = 0.2, 0o = 0.2,
03 = 0.4 (presence of viscous fluid in the annular gap and in the inner shell) when a wave of the
form (35) with k£ = 0.2 is excited at the initial moment of time in each of the shells (see Fig. 5);
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Fig. 6. The results of numerical solution of the system (32) at 6o = 1, 01 = 0.2, 02 = 0.2, 03 = 0.4 with initial conditions
(36) with wave number £ = 0.2 (color online)
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Fig. 7. The results of numerical solution of the system (32) at oo = 1, 061 = 0.2, 02 = 0, 03 = 0.4 with initial conditions (35)
with wave number k£ = 0.2 (color online)

— the evolution of solitary deformation waves in the shells for the case og = 1, 07 = 0.2, 02 = 0.2,
03 = 0.4 (presence of viscous fluid in the annular gap and in the inner shell), when a wave of the
form (36) with k = 0.2 is excited at the initial moment of time in the outer shell (see Fig. 6);

— the evolution of solitary strain waves in the shells for the case 06g = 1, 01 = 0.2, 00 =0, 03 = 0.4
(shells of incompressible material, presence of viscous fluid in the annular gap and in the inner
shell) when a wave of the form (35) with £ = 0.2 is excited at the initial moment of time in each
of the shells (see Fig. 7).

Summary and Conclusion

The calculations presented in Fig. 2-Fig. 4 show that for the cases when there is no fluid in the
inner shell, the waves move to the right, i.e., the next term in (12), corresponding to the nonlinear
wave process, is positive. Consequently, the propagation of solitary waves occurs at supersonic speed.
The analysis of the curves in Fig. 2 indicates that the evolution of solitary strain waves in the shells
occurs with constant velocity and amplitude. The calculations presented in Fig. 3 demonstrate that when
a solitary strain wave is excited at the initial moment of time only in the outer shell, the wave is excited
in the inner shell with the passage of time. At the initial stage, this process is accompanied by the drop
in the amplitude of the solitary wave in the outer shell and the increase in the amplitude of the excited
solitary wave in the inner shell. In the course of time, two waves of practically the same amplitude and
velocity are observed in the shells. This indicates the energy transfer from the outer shell to the inner
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one through the viscous fluid filling the annular channel. The results of calculations in Fig. 4 allow us
to conclude that two solitary waves with different speed and amplitude excited at the initial moment of
time in each of the shells interact with each other during evolution. After the interaction, the waves
keep their shape and speed, i.e., they interact as particles. This behavior indicates that in the considered
cases, the solitary strain waves in the shells are supersonic solitons.

The calculations presented in Fig. 5 and Fig. 6 show that the presence of fluid in the inner shell
significantly changes the evolution of the wave process, namely, there is a change in the direction of
motion of solitary strain waves — they move to the left. This direction of motion indicates that the
propagation of nonlinear strain waves occurs with subsonic velocity. In addition, in the considered cases,
the drop in amplitude and velocity of solitary strain waves in the shells within a short time interval
is observed compared to the calculations presented in Fig. 2—4. The evolution of the wave process at
initial excitation of the solitary strain wave with the same wave number in each of the shells (Fig. 5) is
accompanied by the intense drop in the amplitude and velocity of the waves and, eventually, by a rapid
collapse of the strain solitons. For the case when at the initial time instant a solitary wave is excited
only in the outer shell (Fig. 6), at the initial time step the excitation of a solitary wave in the inner shell
is observed. This process is accompanied by the drop in the amplitude of the wave in the outer shell
and the increase in the amplitude of the wave in the inner shell.If the shell material is incompressible
(Fig. 7), then the movement of deformation waves to the left is observed. Consequently, the propagation
of solitary waves occurs at subsonic speed. However, the attenuation of the deformation solitons persists,
since the amplitude of the solitons in the shells decreases over time. This indicates energy transfer from
the outer shell to the inner one through the viscous fluid in the annular channel. However, then, there
is an intense drop in the amplitude of the deformation wave in both the outer and inner shells with
subsequent collapse of the strain solitons in them. The results obtained suggest that the presence of
viscous fluid in the inner shell leads to attenuation of strain solitons in the shells.

Summarizing the presented study, we note that in this paper we formulated the problem of
hydroelasticity of two coaxial cylindrical shells made of material with the hardening combined quadratic-
fractional nonlinearity. The system of evolution equations including two generalized Schamel-Korteweg—
de Vries equations describing the nonlinear wave process in the shells is obtained on the bases on
the asymptotic analysis of this issue. The new difference scheme using the Grobner basis technique
is derived to discretize the obtained system. The computational experiments allowed to evaluate the
influence of viscous incompressible fluid between the shells and in the inner one on the evolution
of nonlinear solitary strain waves in the shells. The results obtained in this work can be used as a
fundamental basis for further development of methods of wave diagnostics of the state of pipelines
filled with viscous fluid or vessels of the blood system of animals and humans.
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