Структура и динамика локализованных нелинейных волн уравнения синус-Гордона в модели с одинаковыми притягивающими примесями

Обложка

Цитировать

Полный текст

Аннотация

Цель исследования: с помощью аналитических и численных методов рассмотреть задачу о структуре и динамике связанных локализованных нелинейных волн в модели синус-Гордона с примесями (или пространственной неоднородностью периодического потенциала). Методы. С помощью аналитического метода коллективных переменных для случая произвольного числа одинаковых точечных примесей, расположенных на одинаковом расстоянии друг от друга, получена система дифференциальных уравнений для амплитуд локализованных волн как функций от времени, приближенно описывающая поведение рассматриваемой колебательной системы. Для численного решения модифицированного уравнения синус-Гордона применён численный метод конечных разностей с явной схемой интегрирования. Частотный анализ колебаний локализованных волн, рассчитанных численно, выполнялся с помощью дискретного преобразования Фурье. Результаты. Для описания связанных колебаний нелинейных волн, локализованных на трёх одинаковых примесях, получена система дифференциальных уравнений для трёх гармонических осцилляторов со связью упругого типа. Решения этой системы уравнений для частот связанных колебаний хорошо аппроксимируют результаты прямого численного моделирования нелинейной системы. Заключение. Показано, что связанные колебания нелинейных волн, локализованных на трёх одинаковых примесях, расположенных на одинаковом расстоянии друг от друга, представляют собой сумму трёх гармонических колебаний: синфазного, синфазно-антифазного и антифазного типа. Проведён анализ влияния параметров системы и начальных условий на частоту и вид связанных колебаний.

Об авторах

Евгений Григорьевич Екомасов

Башкирский государственный университет

450076, Российская Федерация, Республика Башкортостан, г. Уфа, ул. Заки Валиди, 32

Кирилл Юрьевич Самсонов

ФГАОУ ВО «Тюменский государственный университет»

г. Тюмень, ул. Володарского, 6

Азамат Маратович Гумеров

Башкирский государственный университет

450076, Российская Федерация, Республика Башкортостан, г. Уфа, ул. Заки Валиди, 32

Роман Владимирович Кудрявцев

Башкирский государственный университет

450076, Российская Федерация, Республика Башкортостан, г. Уфа, ул. Заки Валиди, 32

Список литературы

  1. Рыскин Н. М., Трубецков Д. И. Нелинейные волны. Учеб. пособие для вузов. М.: Наука, Физматлит, 2000. 272 c.
  2. Dauxois T., Peyrard M. Physics of Solitons. New York: Cambridge University Press, 2010. 436 p.
  3. Додд Р., Эйлбек Дж., Гиббон Дж., Моррис Х. Солитоны и нелинейные волновые уравнения. М.: Мир, 1988. 694 с.
  4. Cuevas-Maraver J., Kevrekidis P. G., Williams F. The sine-Gordon Model and its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics. Cham: Springer, 2014. 263 p. doi: 10.1007/978-3-319-06722-3.
  5. Браун О. М., Кившарь Ю. С. Модель Френкеля-Конторовой: Концепции, методы, приложения. М.: Физматлит, 2008. 536 с.
  6. Kryuchkov S. V., Kukhar E. I. Nonlinear electromagnetic waves in semi-Dirac nanostructures with superlattice // Eur. Phys. J. B. 2020. Vol. 93, no. 4. P. 62. doi: 10.1140/epjb/e2020-100575-4.
  7. Kiselev V. V., Raskovalov A. A., Batalov S. V. Nonlinear interaction of domain walls and breathers with a spin-wave field // Chaos, Solitons and Fractals. 2019. Vol. 127. P. 217-225. doi: 10.1016/j.chaos.2019.06.013.
  8. Делев В. А., Назаров В. Н., Скалдин О. А., Батыршин Э. С., Екомасов Е. Г. Сложная динамика каскада кинк-антикинковых взаимодействий в линейном дефекте электроконвективной структуры нематика // Письма в ЖЭТФ. 2019. Т. 110, № 9. С. 607-613. doi: 10.1134/S0370274X19210070.
  9. Kalbermann G. ¨ The sine-Gordon wobble // Journal of Physics A: Mathematical and General. 2004. Vol. 37, no. 48. P. 11603-11612. doi: 10.1088/0305-4470/37/48/006.
  10. Ferreira L. A., Piette B., Zakrzewski W. J. Wobbles and other kink-breather solutions of the sineGordon model // Phys. Rev. E. 2008. Vol. 77, no. 3. P. 036616. doi: 10.1103/PhysRevE.77.036613.
  11. Saadatmand D., Dmitriev S. V., Borisov D. I., Kevrekidis P. G. Interaction of sine-Gordon kinks and breathers with a parity-time-symmetric defect // Phys. Rev. E. 2014. Vol. 90, no. 5. P. 052902. doi: 10.1103/PhysRevE.90.052902.
  12. Kivshar Y. S., Pelinovsky D. E., Cretegny T., Peyrard M. Internal modes of solitary waves // Phys. Rev. Lett. 1998. Vol. 80, no. 23. P. 5032-5035. doi: 10.1103/PhysRevLett.80.5032.
  13. Jagtap A. D., Vasudeva Murthy A. S. Higher order scheme for two-dimensional inhomogeneous sine-Gordon equation with impulsive forcing // Communications in Nonlinear Science and Numerical Simulation. 2018. Vol. 64. P. 178-197. doi: 10.1016/j.cnsns.2018.04.012.
  14. Gomide O. M. L., Guardia M., Seara T. M. Critical velocity in kink-defect interaction models: Rigorous results // Journal of Differential Equations. 2020. Vol. 269, no. 4. P. 3282-3346. doi: 10.1016/j.jde.2020.02.030.
  15. Javidan K. Analytical formulation for soliton-potential dynamics // Phys. Rev. E. 2008. Vol. 78, no. 4. P. 046607. doi: 10.1103/PhysRevE.78.046607.
  16. Piette B., Zakrzewski W. J. Scattering of sine-Gordon kinks on potential wells // Journal of Physics A: Mathematical and Theoretical. 2007. Vol. 40, no. 22. P. 5995-6010. doi: 10.1088/1751-8113/40/22/016.
  17. Al-Alawi J. H., Zakrzewski W. J. Scattering of topological solitons on barriers and holes of deformed Sine-Gordon models // Journal of Physics A: Mathematical and Theoretical. 2008. Vol. 41, no. 31. P. 315206. doi: 10.1088/1751-8113/41/31/315206.
  18. Baron H. E., Zakrzewski W. J. Collective coordinate approximation to the scattering of solitons in modified NLS and sine-Gordon models // Journal of High Energy Physics. 2016. Vol. 2016, no. 6. P. 185. doi: 10.1007/JHEP06(2016)185.
  19. Гумеров А. М., Екомасов Е. Г., Муртазин Р. Р., Назаров В. Н. Трансформация солитонов уравнения синус-Гордона в моделях с переменными коэффициентами и затуханием // Журнал вычислительной математики и математической физики. 2015.Т. 55, № 4. С. 631-640. doi: 10.7868/S0044466915040031.
  20. Goodman R. H., Haberman R. Interaction of sine-Gordon kinks with defects: the two-bounce resonance // Physica D: Nonlinear Phenomena. 2004. Vol. 195, no. 3-4. P. 303-323. DOI: 10.1016/ j.physd.2004.04.002.
  21. Гумеров А. М., Екомасов Е. Г., Закирьянов Ф. К., Кудрявцев Р. В. Структура и свойства четырехкинковых мультисолитонов уравнения синус-Гордона // Журнал вычислительной математики и математической физики. 2014.Т. 54, № 3. С. 481-495.doi: 10.7868/S0044466914030077.
  22. Gonzalez J. A., Bellor ´ ´ın A., Guerrero L. E. Internal modes of sine-Gordon solitons in the presence of spatiotemporal perturbations // Phys. Rev. E. 2002. Vol. 65, no. 6. P. 065601. doi: 10.1103/PhysRevE.65.065601.
  23. Gonzalez J. A., Bellor ´ ´ın A., Garc´ıa-Nustes M. A., Guerrero L. E., Jim ˜ enez S., V ´ azquez L. ´ Arbitrarily large numbers of kink internal modes in inhomogeneous sine-Gordon equations // Phys. Lett. A. 2017. Vol. 381, no. 24. P. 1995-1998. doi: 10.1016/j.physleta.2017.03.042.
  24. Белова Т. И., Кудрявцев А. Е. Солитоны и их взаимодействия в классической теории поля // УФН. 1997. Т. 167, № 4. С. 377-406. doi: 10.3367/UFNr.0167.199704b.0377.
  25. Ekomasov E. G., Gumerov A. M., Murtazin R. R. Interaction of sine-Gordon solitons in the model with attracting impurities // Math. Models Methods Appl. Sci. 2016. Vol. 40, no. 17. P. 6178-6186. doi: 10.1002/mma.3908.
  26. Екомасов Е. Г., Гумеров А. М., Кудрявцев Р. В. О возможности наблюдения резонансного взаимодействия кинков уравнения синус-Гордона с локализованными волнами в реальных физических системах // Письма в ЖЭТФ. 2015. Т. 101, № 12. С. 935-939. doi: 10.7868/S0370274X15120127.
  27. Ekomasov E. G., Gumerov A. M., Kudryavtsev R. V. Resonance dynamics of kinks in the sineGordon model with impurity, external force and damping // J. Comput. Appl. Math. 2017. Vol. 312. P. 198-208. doi: 10.1016/j.cam.2016.04.013.
  28. Ekomasov E. G., Gumerov A. M., Kudryavtsev R. V., Dmitriev S. V., Nazarov V. N. Multisoliton dynamics in the sine-Gordon model with two point impurities // Braz. J. Phys. 2018. Vol. 48, no. 6. P. 576-584. doi: 10.1007/s13538-018-0606-4.
  29. Gumerov A. M., Ekomasov E. G., Kudryavtsev R. V., Fakhretdinov M. I. Excitation of largeamplitude localized nonlinear waves by the interaction of kinks of the sine-Gordon equation with attracting impurity // Russian Journal of Nonlinear Dynamics. 2019. Vol. 15, no. 1. P. 21-34. doi: 10.20537/nd190103.
  30. Geng X., Shen J., Xue B. A new nonlinear wave equation: Darboux transformation and soliton solutions // Wave Motion. 2018. Vol. 79. P. 44-56. doi: 10.1016/j.wavemoti.2018.02.009.
  31. Ekomasov E. G., Murtazin R. R., Bogomazova O. B., Gumerov A. M. One-dimensional dynamics of domain walls in two-layer ferromagnet structure with different parameters of magnetic anisotropy and exchange // J. Magn. Magn. Mater. 2013. Vol. 339. P. 133-137. doi: 10.1016/j.jmmm.2013.02.042.
  32. Екомасов Е. Г. Азаматов Ш. А., Муртазин Р. Р. Изучение зарождения и эволюции магнитных неоднородностей типа солитонов и бризеров в магнетиках с локальными неоднородностями анизотропии // Физика металлов и металловедение. 2008. Т. 105, № 4. С. 341-349.
  33. Ekomasov E. G., Murtazin R. R., Nazarov V. N. Excitation of magnetic inhomogeneities in threelayer ferromagnetic structure with different parameters of the magnetic anisotropy and exchange // J. Magn. Magn. Mater. 2015. Vol. 385. P. 217-221. doi: 10.1016/j.jmmm.2015.03.019.
  34. Gumerov A. M., Ekomasov E. G., Kudryavtsev R. V. One-dimensional dynamics of magnetic inhomogeneities in a three- and five-layer ferromagnetic structure with different values of the magnetic parameters // Journal of Physics: Conference Series. 2019. Vol. 1389. P. 012004. doi: 10.1088/1742-6596/1389/1/012004.
  35. Шамсутдинов М. А., Назаров В. Н., Ломакина И. Ю., Харисов А. Т., Шамсутдинов Д. М. Ферро- и антиферромагнитодинамика. Нелинейные колебания, волны и солитоны. М.: Наука, 2009. 456 с.
  36. Магнус К. Колебания: Введение в исследование колебательных систем. М.: Мир, 1982. 304 с.
  37. Фалейчик Б. В. Одношаговые методы численного решения задачи Коши. Минск: БГУ, 2010. 42 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».