Longitudinal waves in the walls of an annular channel filled with liquid and made of a material with fractional nonlinearity
- 作者: Mogilevich L.I.1, Popova E.V.1
-
隶属关系:
- Yuri Gagarin State Technical University of Saratov
- 期: 卷 31, 编号 3 (2023)
- 页面: 365-376
- 栏目: Articles
- URL: https://journal-vniispk.ru/0869-6632/article/view/250961
- DOI: https://doi.org/10.18500/0869-6632-003040
- EDN: https://elibrary.ru/RKTVVT
- ID: 250961
如何引用文章
全文:
详细
作者简介
Lev Mogilevich
Yuri Gagarin State Technical University of Saratovul. Politechnicheskaya, 77, Saratov, 410054, Russia
Elizaveta Popova
Yuri Gagarin State Technical University of Saratovul. Politechnicheskaya, 77, Saratov, 410054, Russia
参考
- Nariboli GA. Nonlinear longitudinal dispersive waves in elastic rods. J. Math. Phys. Sci. 1970; 4:64–73.
- Nariboli GA, Sedov A. Burgers’s-Korteweg-De Vries equation for viscoelastic rods and plates. J. Math. Anal. Appl. 1970;32(3):661–677. doi: 10.1016/0022-247X(70)90290-8.
- Erofeev VI, Klyueva NV. Solitons and nonlinear periodic strain waves in rods, plates, and shells (a review). Acoustical Physics. 2002;48(6):643–655. doi: 10.1134/1.1522030.
- Zemlyanukhin AI, Mogilevich LI. Nonlinear waves in inhomogeneous cylindrical shells: A new evolution equation. Acoustical Physics. 2001;47(3):303–307. doi: 10.1007/BF03353584.
- Zemlyanukhin AI, Andrianov IV, Bochkarev AV, Mogilevich LI. The generalized Schamel equation in nonlinear wave dynamics of cylindrical shells. Nonlinear Dynamics. 2019;98(1): 185–194. doi: 10.1007/s11071-019-05181-5.
- Bochkarev SA, Matveenko VP. Stability of coaxial cylindrical shells containing a rotating fluid. Computational Continuum Mechanics. 2013;6(1):94–102. doi: 10.7242/1999-6691/2013.6.1.12.
- Mogilevich L, Ivanov S. Longitudinal waves in two coaxial elastic shells with hard cubic nonlinearity and filled with a viscous incompressible fluid. In: Dolinina O, Bessmertny I, Brovko A, Kreinovich V, Pechenkin V, Lvov A, Zhmud V, editors. Recent Research in Control Engineering and Decision Making. ICIT 2020. Vol. 337 of Studies in Systems, Decision and Control. Cham: Springer; 2021. P. 14–26. doi: 10.1007/978-3-030-65283-8_2.
- Paıdoussis MP. Fluid-Structure Interactions: Slender Structures and Axial Flow. 2nd edition. London: Academic Press; 2014. 867 p. doi: 10.1016/C2011-0-08057-2.
- Amabili M. Nonlinear Vibrations and Stability of Shells and Plates. New York: Cambridge University Press; 2008. 374 p. doi: 10.1017/CBO9780511619694.
- Samarskii AA. The Theory of Difference Schemes. Boca Raton: CRC Press; 2001. 786 p. doi: 10.1201/9780203908518.
- Il’yushin AA. Continuum Mechanics. Moscow: Moscow University Press; 1990. 310 p. (in Russian).
- Jones RM. Deformation Theory of Plasticity. Blacksburg: Bull Ridge Publishing; 2009. 622 p.
- Kauderer H. Nichtlineare Mechanik. Berlin: Springer-Verlag; 1958. 684 s. (in German). doi: 10.1007/978-3-642-92733-1.
- Zemlyanukhin AI, Bochkarev AV, Andrianov IV, Erofeev VI. The Schamel-Ostrovsky equation in nonlinear wave dynamics of cylindrical shells. Journal of Sound and Vibration. 2021;491:115752. doi: 10.1016/j.jsv.2020.115752.
- Loitsyanskii LG. Mechanics of Liquids and Gases. Vol. 6 of International Series of Monographs in Aeronautics and Astronautics. Oxford: Pergamon Press; 1966. 804 p. doi: 10.1016/C2013-0- 05328-5.
- Gerdt VP, Blinkov YA, Mozzhilkin VV. Grobner bases and generation of difference schemes for partial differential equations. Symmetry, Integrability and Geometry: Methods and Applications. 2006;2:051. doi: 10.3842/SIGMA.2006.051.
补充文件
