ПЕРСПЕКТИВНЫЕ МАТЕРИАЛЫ =

Научная статья УДК 544.236.2

DOI: 10.7868/S3034530825040069

Новые оксифторниобатные стекла в системе CdNbOF₅–BaF₂–ErF₃

Л.Н. Игнатьева, Ю.В. Марченко $^{\boxtimes}$, Н.Н. Савченко, В.А. Мащенко, А.Г. Мирочник

Лидия Николаевна Игнатьева доктор химических наук, главный научный сотрудник Институт химии ДВО РАН, Владивосток, Россия ignatieva@ich.dvo.ru https://orcid.org/0000-0002-8162-440X

Юрий Владимирович Марченко кандидат химических наук, старший научный сотрудник Институт химии ДВО РАН, Владивосток, Россия gor_dvo@mail.ru https://orcid.org/0000-0002-0494-9948

Наталья Никифоровна Савченко научный сотрудник Институт химии ДВО РАН, Владивосток, Россия savchenko@ich.dvo.ru

Вадим Анатольевич Мащенко научный сотрудник Институт химии ДВО РАН, Владивосток, Россия mashchenko@ich.dvo.ru https://orcid.org/0000-0002-7826-5362

Анатолий Григорьевич Мирочник доктор химических наук, главный научный сотрудник Институт химии ДВО РАН, Владивосток, Россия mirochnik@ich.dvo.ru https://orcid.org/0000-0002-3247-9517

Аннотация. Синтезированы новые стекла в системе CdNbOF $_5$ -BaF $_2$ -xErF $_3$ (х = 0−5,0 мол. %). Стекла двухфазны. Соотношение аморфных фаз, зависящее от содержания в стекле трифторида эрбия, влияет на термические, кристаллизационные, структурные и оптические характеристики стекол. При содержании в стекле 3 мол. % ErF $_3$ происходят перестройки в структуре стекол, приводящие к увеличению связанности оксифторниобатных сеток. Стекла в системе CdNbOF $_5$ -BaF $_2$ -ErF $_3$ характеризуются зеленой люминесценцией Er 3 +, обусловленной переходами: 4 S $_{3/2}$ → 4 I $_{15/2}$ (544 нм), 2 H $_{11/2}$ → 4 I $_{15/2}$ (551 нм). Интенсивность люминесценции увеличивается с ростом содержания ErF $_3$ до 2 мол. %. Дальнейшее увеличение содержания трифторида эрбия в составе стекла приводит к постепенному уменьшению интенсивности

[©] Игнатьева Л.Н., Марченко Ю.В., Савченко Н.Н., Мащенко В.А., Мирочник А.Г., 2025

люминесценции, обусловленному концентрационным тушением и изменениями строения и фазового состава при данных концентрациях допанта.

Ключевые слова: стекла, синтез, структура, термические свойства, люминесценция

Для цитирования: Игнатьева Л.Н., Марченко Ю.В., Савченко Н.Н., Мащенко В.А., Мирочник А.Г. Новые оксифторниобатные стекла в системе CdNbOF₅–BaF₂–ErF₃ // Вестн. ДВО РАН. 2025. № 4. С. 67–77. http://dx.doi.org/10.7868/S3034530825040069

Финансирование. Работа выполнена при поддержке Российского научного фонда, грант № 24-13-00133.

Original article

New oxyfluoroniobate glasses in CdNbOF₅–BaF₂–ErF₃ systems

L.N. Ignatieva, Yu.V. Marchenko, N.N. Savchenko, V.A. Mashchenko, A.G. Mirochnik

Lidiya N. Ignatieva
Doctor of Sciences in Chemistry, Chief Researcher
Institute of Chemistry, FEB RAS, Vladivostok, Russia ignatieva@ich.dvo.ru
https://orcid.org/0000-0002-8162-440X

Yuri V. Marchenko
Candidate of Sciences in Chemistry, Senior Researcher
Institute of Chemistry, FEB RAS, Vladivostok, Russia
gor_dvo@mail.ru
https://orcid.org/0000-0002-0494-9948

Natalia N. Savchenko Researcher Institute of Chemistry, FEB RAS, Vladivostok, Russia savchenko@ich.dvo.ru

Vadim A. Mashchenko Researcher Institute of Chemistry, FEB RAS, Vladivostok, Russia mashchenko@ich.dvo.ru https://orcid.org/0000-0002-7826-5362

Anatolii G. Mirochnik
Doctor of Sciences in Chemistry, Chief Researcher
Institute of Chemistry, FEB RAS, Vladivostok, Russia
mirochnik@ich.dvo.ru
https://orcid.org/0000-0002-3247-9517

Abstract. New glasses have been synthesized in the CdNbOF $_5$ -BaF $_2$ -xErF $_3$ (x = 0–5.0 mol. %) system. The glasses are two-phase. The ratio of amorphous phases, depending on the erbium trifluoride content in the glass, affects the thermal, crystallization, structural and optical characteristics of the glasses. When the ErF $_3$ content in the glass is 3 mol. %, rearrangements in the glass structure occur, leading to an increase in the connectivity of oxyfluoroniobate networks. Glasses in the CdNbOF $_5$ -BaF $_2$ -ErF $_3$ system are characterized by green luminescence of Er 3 +, corresponding to the transitions: 4 S $_{3/2} \rightarrow ^4$ I $_{15/2}$ (544 nm), 2 H $_{11/2} \rightarrow ^4$ II $_{5/2}$ (551 nm). The luminescence intensity increases

ВЕСТНИК ДАЛЬНЕВОСТОЧНОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК / VESTNIK OF THE FAR EAST BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES, 2025, № 4 with an increase in the ErF₃ content to 2 mol. %. A further increase in the content of erbium trifluoride in the glass composition leads to a gradual decrease in the luminescence intensity, caused by concentration quenching and changes in the structure and phase composition at given dopant concentrations.

Keywords: glass, synthesis, structure, thermal properties, luminescence

For citation: Ignatieva L.N., Marchenko Yu.V., Savchenko N.N., Mashchenko V.A., Mirochnik A.G. New oxyfluoroniobate glasses in CdNbOF₅–BaF₂–ErF₃ systems. Vestnik of the FEB RAS. 2025;(4):67-77. (In Russ.). http://dx.doi.org/10.7868/S3034530825040069

Funding. The work was supported by the Russian Science Foundation, grant number 24-13-00133.

Введение

Типичным представителем оксифторидных стекол, зарекомендовавшим себя с наилучшей стороны, являются оксифторниобатные стекла. Неоднократно [1-3] исследователи обращались к стеклам, в состав которых входит CdF₂, рассматривая его как функциональный компонент, перспективный для формирования стеклообъектов. Что касается оксифторниобатных стекол, то системы NbO_2F - BaF_2 - MF_n (MF_n = ZnF_2 , CdF_2 , GaF_3 , NaF) были описаны в ранних работах [4, 5]. Среди них система с CdF, показала наибольшую область стеклообразования, что согласуется с фактом существования в стекле бинарной системы CdF,-BaF, [2], хотя следует отметить, что стекла в этой системе все же относятся к типу неустойчивых. В работах [6, 7] обсуждаются стекла в системе CdNbOF,—ВаF,—ІпF,, которые, как было выявлено, можно считать трехкомпонентными. Их структуру формируют полиэдры (NbO₃F₄ или NbO₃F₃), InF₆ и полиэдры, формируемые компонентом CdF₃. Интересным результатом, полученным при изучении данных стекол, явилась зафиксированная [7–9] фотолюминесценция, соответствующая уровням эмиссии 542, 573 и 673, 751 нм. Подобный результат был получен также для стекол в системе ZnNbOF₅-BaF₃-InF₃, но не MnNbOF₅-ВаГ,-InГ, [7]. Анализ результатов исследования стекол в названных системах позволил сделать предположение, что природа наблюдаемой фотолюминесценции связана с квантово-размерными эффектами в присутствующих в стекле включениях, в состав которых входит индий. Характерной особенностью оксифторидных, в том числе оксифторниобатных, стекол является высокая растворимость редкоземельных ионов. С использованием специально синтезированных монокристаллов ZnNbOF : 6H,O и MnNbOF : 4H,O получены новые стекла в системах ZnNbOF₅-BaF₂-ErF₃ и MnNbOF₅-BaF₂-ErF₃ с содержанием трифторида эрбия от 0,1 до 5 мол. % [10, 11]. Присутствие в системах трифторида эрбия, как и ожидалось, обеспечивает люминесцентные свойства стекол. Однако если стекла в системе ZnNbOF₅-BaF₂-ErF₃ показывают люминесценцию в зеленой области (542, 573 нм), причем при содержании ЕгГ, выше 1 мол. % интенсивность люминесценции плавно уменьшается, то в стеклах в системе MnNbOF, -ВаF, -ЕгF, тушение люминесценции не выявлено до 5 мол. % ErF, а наиболее интенсивная люминесценция зафиксирована в красной области. Здесь налицо влияние катиона, входящего в состав компонента MNbOF, (M = Zn, Mn, Cd), на строение стекольной сетки, а возможно, и то, что Mn^{2+} также является люминофором [12, 13]. Представляло интерес изучить систему с другим катионом, например, входящим в состав компонента CdNbOF₅.

Как продолжение проводимого комплекса исследований оксифторниобатных стекол разных составов в настоящей работе были синтезированы стекла в системе $CdNbOF_5$ — BaF_2 — ErF_3 . Стекла в такой системе синтезированы впервые, поэтому были изучены стеклообразование, термические характеристики, обсуждены строение и оптические, в особенности фотолюминесцентные, свойства. Представлены результаты исследования стекол в системе $CdNbOF_5$ — BaF_2 — ErF_3 , в которых содержание ErF_3 изменялось от 0 до 5,0 мол. %.

Материалы и методы

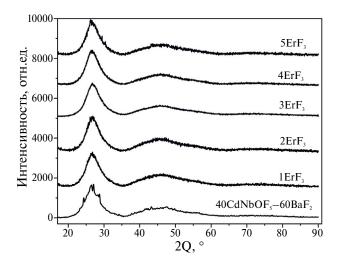
Стекла в системе $CdNbOF_5$ – BaF_2 – ErF_3 были синтезированы впервые, поэтому большое внимание уделялось методике синтеза. Прекурсоры в подавляющем большин-

стве синтезированы с изучением их термических свойств, с использованием Q режима и анализа газовой фазы при прогреве образца. Такой подход позволил избежать ошибок в определении состава полученного стекла и избавиться от ряда примесей. При синтезе стекол изучалось влияние тигля, атмосферы, времени выдержки расплава. Исходными компонентами для синтезируемых стекол были ${\rm CdNbOF}_5$ · ${\rm 4H}_2{\rm O}$, полученные целенаправленно по разработанной ранее методике [14]. Это дает возможность добиться высокой степени чистоты исходных компонентов, минуя необходимые этапы очистки, а в ряде случаев и замены дорогостоящих реактивов.

Стекла синтезировали в закрытых стеклоуглеродных тиглях в муфельной печи при 900–950°С. Расплавленную шихту выдерживали в печи в течение 5–10 мин и затем быстро охлаждали между двумя медными пластинами.

Отсутствие или наличие кристаллической фазы в образцах проверяли с помощью дифрактометра Bruker D8 ADVANCE (излучение $CuK\alpha$) (рис. 1).

Термические свойства полученных объектов были изучены на дифференциально сканирующем калориметре DSC-204-F1 (NETZSCH) с использованием алюминиевых тиглей в аргоновой атмосфере.


ИК спектры регистрировались с помощью ИК Фурье-спектрометра Vertex 70v фирмы BRUKER методом нарушенного полного внутреннего отражения на приставке НПВО BRUKER Platinum A225 ATR-Einheit с алмазным оптическим элементом в диапазоне $350-4000 \text{ cm}^{-1}$.

Спектры КР измерялись с помощью конфокального рамановского микроскопа WiTec alpha 500. Для возбуждения использовался лазер с длиной волны 532 нм, со временем накопления сигнала 1 с, усредненным по 100 спектрам, и спектральным разрешением 2 см⁻¹. Все измерения проводились при комнатной температуре.

Спектры возбуждения и фотолюминесценции регистрировались на приборе Horiba Fluorolog. На образец подавался монохроматический свет (от Хе-лампы через монохроматор, ширина щели 5 нм), после чего отраженный сигнал собирался во второй монохроматор на детекторе ФЭУ. Шаг сканирования источника излучения 10 нм, шаг сканирования спектра фотолюминесценции 1 нм.

Результаты и обсуждение

Как видно из рис. 1, рентгенограммы образцов в системе $CdNbOF_5$ – BaF_2 – ErF_3 по-казывают наличие диффузных составляющих, характеризующих присутствие аморфных фаз во всех образцах. Ни на одной рентгенограмме нет четко выраженных рефлексов, характери-

Puc. 1. Рентгенограммы образцов в системе CdNbOF₅-BaF₂-ErF₃

зующих присутствие кристаллических фаз. Дифракционные картины представлены двумя диффузными гало в областях $2\theta=22-30^\circ$ и $2\theta=37-60^\circ$, которые отвечают рассеянию от двух независимых аморфных фаз, следовательно, образцы в рассматриваемой системе двухфазны. При анализе рентгенограмм выявлено, что долевое соотношение между фазами зависит от содержания в системе ${\rm ErF}_3$. Здесь можно отметить, что соотношение интенсивностей аморфных составляющих при содержании ${\rm ErF}_3$ до 2 мол. % ~2,6, при 3 мол. % и выше ~3,5.

В табл. 1 представлены состав шихты, используемый для синтеза стекла, термические параметры стекол, полученные из кривых ДСК.

Данные термического анализа образцов в системе $CdNbOF_5$ – BaF_2 – ErF_3 с содержанием трифторида эрбия до 5 мол. % показали наличие стеклоперехода на всех ДСК кривых обсуждаемых систем. С учетом рентгенограмм (см. рис. 1) можно заключить, что все обсуждаемые (см. табл. 1) образцы являются стеклами.

Температуры стеклоперехода ($t_{\rm g}$), начала кристаллизации ($t_{\rm x}$), а, следовательно, и термическая устойчивость, зависят от состава системы. Ясно, что главным фактором, определяющим термические характеристики обсуждаемых стекол, является оксифторниобатный компонент. Термические характеристики стекол, допированных ${\rm ErF}_3$ (см. табл. 1), не выходят из области температур стеклования, начала кристаллизации, интервалов термической устойчивости (ΔT) и устойчивости стекол к кристаллизации, характерных для оксифторниобатных стекол [8, 10, 11]. Однако если содержание трифторида эрбия в системе от 0 до 2 мол. % ${\rm ErF}_3$ слабо влияет на термические характеристики и кристаллизация проходит практически в один этап, то начиная с 3 и до 5 мол. % ${\rm ErF}_3$ мы видим заметное смещение всех термических характеристик в область более высоких температур и хорошо выраженную многоступенчатую кристаллизацию (рис. 2). Полученный результат согласуется с данными рентгенофазового анализа и, как будет показано ниже, с результатами анализа ИК спектров, которые несут информацию о строении стекол.

Влияние содержания трифторида эрбия в системе $CdNbOF_5$ – BaF_2 – ErF_3 на строение стекол хорошо заметно при анализе ИК спектров (рис. 3).

В целом ИК спектры CdNbOF $_5$ -ВаF $_2$ -ЕгF $_3$ показывают сходство с спектрами других оксифторниобатов, таких как стекла в системе MnNbOF $_5$ -ВаF $_2$ -ЕгF $_3$, ZnNbOF $_5$ -ВаF $_2$ -ЕгF $_3$ или NbO $_2$ F-ВаF $_2$ -ІпF $_3$ -ЕгF и др. [8–11, 15, 16]. В ИК спектрах наблюдаются одиночные полосы в области 900–950 см $^{-1}$, широкие полосы более сложной структуры в области 800 см $^{-1}$ и 500–400 см $^{-1}$. Эти полосы характеризуют колебания немостиковой связи Nb=O, мостиковых связей –Nb-O-Nb- и колебаний Nb-F соответственно [17].

Таким образом, как и в других оксифторниобатных системах, стекла в системе $CdNbOF_5$ – BaF_2 – ErF_3 формируются оксифторниобатными полиэдрами NbO_2F_4 или NbO_3F_3 , являющимися основными структурными элементами стекольных сеток, полиэдры объединены кислородными мостиками, формирующими сетку стекла. Однако если ИК спектры

Таблица 1 Термические данные для стекол в системе CdNbOF $_5$ -BaF $_2$ -ErF $_3$ (T_g – температура стеклоперехода, T_x – температура начала кристаллизации, T_p – температура пиков кристаллизации, ΔT – интервал термической устойчивости, S – стабильность стекла к кристаллизации ($S=(t_p-t_x)(t_x-t_g)/t_g$, K) по Сааде-Пуле [7]

Состав шихты	T_{g}	T _x	$T_{p1}, T_{p2}, T_{p3}, T_{p4}$	ΔΤ	S
40CdNbOF ₅ -60BaF ₂	314	340	344	26	0,18
39CdNbOF ₅ -60BaF ₂ -1ErF ₃	316	346	353	30	0,36
38CdNbOF ₅ -60BaF ₂ -2ErF ₃	317	342	350 352	25	0,34
37CdNbOF ₅ -60BaF ₂ -3ErF ₃	354	398	409 431 456 498	44	0,77
36CdNbOF ₅ -60BaF ₂ -4ErF ₃	360	400	409 430 461	40	0,57
35CdNbOF ₅ -60BaF ₂ -5ErF ₃	364	402	412 460 467	38	0,60

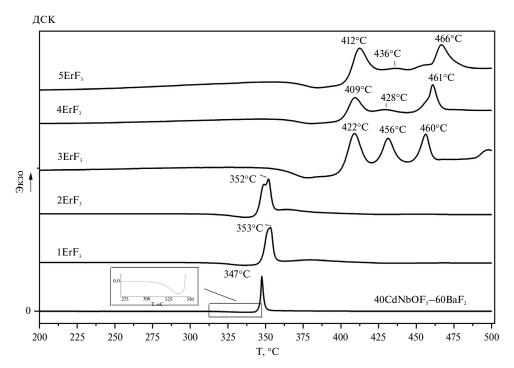


Рис. 2. ДСК кривые стекол в системе CdNbOF₅-BaF₂-ErF₃

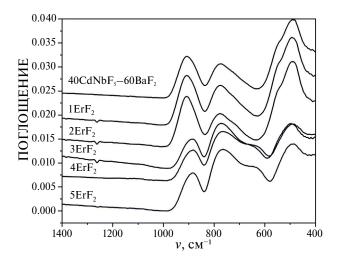
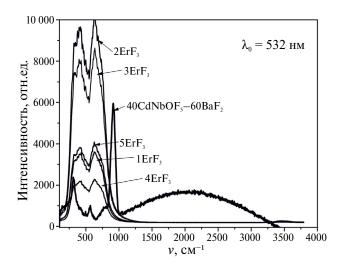


Рис. 3. ИК спектры образцов в системе CdNbOF₅-BaF₂-ErF₃

стекол в системе MnNbOF₅–BaF₂–ErF₃, равно как и в ZnNbOF₅–BaF₂–ErF₃, при увеличении содержания ErF_3 от 0 до 5 мол. % практически идентичны, то в ИК спектрах стекол в системе $CdNbOF_5$ –BaF₂–ErF₃ при содержании ErF_3 от 3 мол. % и выше наблюдается не только смещение полосы v(Nb=O) в область низких частот более чем на 20 см⁻¹ (табл. 2), но и заметная деформация полосы, характеризующая колебания мостиков –Nb–O–Nb–, и уменьшение интенсивностей полос v(Nb-F). Такие заметные изменения в ИК спектрах свидетельствуют о перестройках в стекольной сетке, в частности появлении в структуре двух типов мостиков и уменьшении числа немостиковых связей Nb–F, а это, в свою очередь, указывает на увели-


чение связанности оксифторниобатных сеток, возможно, за счет формирования группировок ErF_n и образования при этом связи Nb–F–Er с оксифторниобатными полиэдрами. Нельзя исключать, что это связано и с появлением кристаллитов, не фиксируемых методом РФА. В этом случае зародышеобразователями кристаллизации являются не только ионы кадмия (показано в работе [6]), но и ионы эрбия.

Спектры КР, которые обычно используются для получения дополнительной информации о строении изучаемого объекта, в данном случае для изучения строения, оказались неинформативными. На рис. 4 представлены спектры КР стекол в системе $CdNbOF_5$ — BaF_2 — ErF_3 . В области 200-1000 см $^{-1}$ наблюдаются полосы, характеризующие колебания оксифторниобатного иона (Nb=O, –Nb–O–Nb– и Nb–F соответственно) только в спектре стекла, в котором трифторид эрбия отсутствует ($40CdNbOF_5$ – $60BaF_2$). Во всех остальных случаях мы наблюдаем спектр неупругого рассеяния света (HKPC), в котором присутствуют два вклада: вклад КР и фотолюминесценции.

С данной ситуацией мы сталкивались неоднократно при анализе стекол, в состав которых входит РЗЭ [8, 9, 12]. Предполагая, что широкие интенсивные полосы, наблюдаемые в спектрах (см. рис. 4), являются вкладом фтотолюминесценции, маскирующим спектр КР, при пересчете получаем, что полосы соответствуют уровням эмиссии 544 и 551 нм соответственно. Эмиссия в этой области характерна для люминесценции ионов эрбия [18].

Таблица 2 Частоты полос (v, см⁻¹) в ИК спектрах поглощения стекол в системах CdNbOF₅–BaF₇–ErF₃

Состав	v(Nb = O)	v(-Nb-O-Nb-)	ν(Nb–F)	
40CdNbOF ₅ -60BaF ₂	907	907 776		
39CdNbOF ₅ -60BaF ₂ -1ErF ₃	907	776	491 538 пр	
38CdNbOF ₅ -60BaF ₂ -2ErF ₃	910	774	491 538 пр	
37CdNbOF ₅ -60BaF ₂ -3ErF ₃	884	659 761	494	
36CdNbOF ₅ -60BaF ₂ -4ErF ₃	884	659 763	490	
35CdNbOF ₅ -60BaF ₂ -5ErF ₃	884	659 763	490	

Puc. 4. Спектры KP стекол CdNbOF₅-BaF₂-ErF₃

При этом, как видно из рис. 4, интенсивность вклада фотолюминесценции чувствительна к содержанию в образце трифторида эрбия.

Спектры прямого измерения люминесценции стекол в системе $CdNbOF_5$ – BaF_2 – ErF_3 подтверждают верность предположения, сделанного на основании анализа спектров неупругого рассеяния света. На рис. 5 представлены спектры возбуждения в диапазоне 250–550 нм и люминесценции стекол в системе $CdNbOF_5$ – BaF_2 – ErF_3 .

Как видно (рис. 5, a), спектр возбуждения образцов, легированных Er^{3+} , включает семь полос при 354, 363, 375, 405, 440, 447, 485 нм, определяемых переходами с нижнего уровня $^4I_{13/2}$ на уровни $^2K_{15/2}$, $^4G_{9/2}$, $^4G_{11/2}$, $^2G_{9/2}$, $^4F_{5/2}$, $^4F_{5/2}$, $^4F_{7/2}$ соответственно. Спектры люминесценции обсуждаемых стекол (рис. 5, δ) характеризуются наличием интенсивных полос в области 500–575 нм. Эти полосы характерны для спектра зеленой люминесценции стекол и соединений, содержащих эрбий [10, 16, 18], и соответствуют переходам: $^4S_{3/2} \rightarrow ^4I_{15/2}$ (544 нм), $^2H_{11/2} \rightarrow ^4I_{15/2}$ (551 нм). Интенсивность люминесценции увеличивается с ростом содержания ErF_3 в диапазоне до 2 мол. %. Дальнейшее увеличение содержания трифторида эрбия в составе стекла приводит к постепенному снижению интенсивности люминесценции (см. рис. 5, δ ; 6).

Оптимальное содержание трифторида эрбия в стекле с точки зрения люминесцентных свойств составляет 2 мол. %. Зеленой люминесценцией характеризуются и другие оксифторниобатные стекла, содержащие трифторид эрбия, например, стекла в системах $NbO_2F-BaF_2-InF_3-ErF_3$ и $ZnNbOF_5-BaF_2-ErF_3$ [9, 10]. Отметим, что в стеклах системы $NbO_2F-BaF_2-InF_3-ErF_3$, по данным [9], тушение люминесценции не наблюдается даже

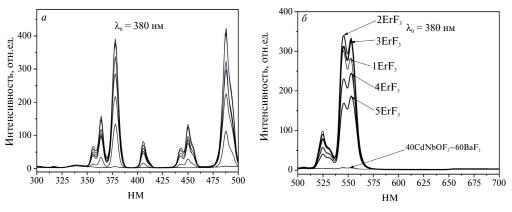


Рис. 5. Спектры возбуждения (a) и люминесценции (б) стекол в системе CdNbOF_s-BaF₃-ErF₃

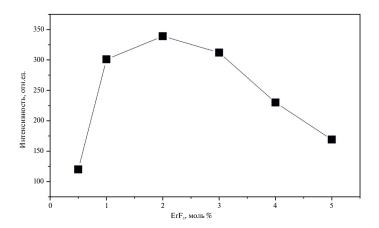


Рис. 6. Зависимость интенсивности люминесценции стекол в системе $CdNbOF_5$ – BaF_2 – $xErF_3$ от со-держания ErF_3 в стекле

при 2 мол. % ErF_3 , а в стеклах в системе $ZnNbOF_5$ — BaF_2 — ErF_3 тушение люминесценции начинается уже после 1 мол. % ErF_3 [10]. Причины тушения люминесценции могут быть различными. Как известно [18], высокая плотность энергетических уровней Er^{3+} способствует высокой эффективности диссипации энергии электронного возбуждения, а это приводит к высокой чувствительности люминесценции к концентрации редкоземельного иона и его окружению в эрбийсодержащих стеклах. Мы полагаем, что уменьшение интенсивности люминесценции при содержании трифторида эрбия 3 мол. % и выше в составе стекла в системе $CdNbOF_5$ — BaF_2 — ErF_3 также связано с эффектом концентрационного тушения [19, 20]. Однако, обращаясь к данным, представленным выше, мы предполагаем, что уменьшение интенсивности люминесценции при содержании ErF_3 в системе $CdNbOF_5$ — BaF_2 — ErF_3 от 3 мол. % и выше связано не просто с концентрационным тушением, а с особенностями строения, определяемыми соотношениями фаз в этих системах при данных концентрациях допанта.

Заключение

С использованием специально синтезированного монокристалличекого $CdNbOF_5$ · $4H_2O$, дифторида бария и трифторида эрбия (х.ч.) синтезированы новые стекла в системе $CdNbOF_5$ – BaF_2 – ErF_3 , в которых содержание ErF_3 изменялось от 0 до 5,0 мол. %.

Стекла двухфазны. Соотношение двух аморфных фаз изменяет термические, структурные и оптические характеристики стекол. Содержание ${\rm ErF}_3$ в системе до 2 мол. % ${\rm ErF}_3$ слабо влияет на термические характеристики, и кристаллизация проходит практически в один этап, при содержании ${\rm ErF}_3$ выше 3 мол. % ${\rm ErF}_3$ выявлены заметное смещение всех термических характеристик в область более высоких температур и хорошо выраженная многоступенчатая кристаллизация. При содержании в стекле 3 мол. % ${\rm ErF}_3$ и выше в структуре стекольной сетки появляются два типа кислородных мостиков и уменьшение числа немостиковых связей Nb–F, а это, в свою очередь, указывает на увеличение связанности оксифторниобатных сеток, возможно, за счет формирования группировок ${\rm ErF}_n$ и образования при этом связи Nb–F–Er с оксифторниобатными полиэдрами.

Стекла в системе CdNbOF $_5$ -BaF $_2$ -ErF $_3$ характеризуются зеленой люминесценцией Er 3 +, соответствующей переходам: 4 S $_{3/2}$ $\rightarrow ^4$ I $_{15/2}$ (544 нм), 2 H $_{11/2}$ $\rightarrow ^4$ I $_{15/2}$ (551 нм). Интенсивность люминесценции увеличивается с ростом содержания ErF $_3$ до 2 мол. %. Дальнейшее увеличение содержания трифторида эрбия в составе стекла приводит к постепенному снижению интенсивности люминесценции. Оптимальное содержание трифторида эрбия в стекле с точки зрения люминесцентных свойств составляет 2 мол. %. Уменьшение интенсивности люминесценции при содержании трифторида эрбия 3 мол. % и выше в составе стекла в системе CdNbOF $_5$ -BaF $_2$ -ErF $_3$ связано с эффектом концентрационного тушения, обусловленного особенностями строения и фазового состава при данных концентрациях допанта.

СПИСОК ИСТОЧНИКОВ

- 1. Mateski M., Poulain Mi., Poulain Ma. Verres aux halogenures de cadmium 1. Verres fluores // Mat. Res. Bull. 1982. Vol. 17. P. 1275–1281.
 - 2. Ishwar D. Aggarwal, Grant Lu. Fluoride glass fiber optics. New York: Acad. Press, 1991. 416 p.
- 3. Doweidar H., El-Egili K., Ramada R.M., Khalil E. Structural studies and properties of CdF₂–B₂O₃ glasses // J. Non-Cryst. Solids. 2018. Vol. 481. P. 494–502. https://doi.org/10.1016/j.jnoncrysol.2017.11.036
- 4. Klouche Bouchaour Z.C., Polain M., Belhadji M., Hager I., Mallawany R.E.I. New oxyfluoroniobate glasses // J. Non-Cryst. Solids. 2005. Vol. 351. P. 816. https://doi.org/10.1016/j.jnoncrysol.2005.01.081
- 5. Polishchuk S.A., Ignat'eva L.N., Marchenko Yu.V., Bouznik V.M. Oxyfluoride glasses (review) // Glass Phys. Chem. 2011. Vol. 37 (1). P. 1–20. https://doi.org/10.1134/S108765961101010X
- 6. Ignatieva L.N., Savchenko N.N., Marchenko Yu.V., Sarin S.A. Synthesis, structure and crystallization of glasses in the CdNbOF₅–BaF₂–InF₃ system // Ceram. Int. 2019. Vol. 45. P. 17737–17741. https://doi.org/10.1016/j.ceramint.2019.05.343
- 7. Игнатьева Л.Н., Савченко Н.Н., Марченко Ю.В., Мащенко В.А., Сарин С.А. Новые стекла в системах MNbOF₅–BaF₂–InF₃ (M Mn, Cd, Zn) // Вестн. ДВО РАН. 2024. № 6. С. 187–202.

- 8. Ignatieva L.N., Savchenko N.N., Marchenko Yu.V., Mashchenko V.A., Mirochnik A.G., Galkin K.N. New Glasses in the ZnNbOF₅–BaF₂-InF₃ system // J. Non-Cryst. Solids. 2024. Vol. 623. 1226919. https://doi.org/10.1016/j.jnoncrysol.2023.122691
- 9. Ignatieva L.N., Savchenko N.N., Marchenko Y.V., Mashchenko V.A., Bouznik V.M. Raman study of glasses in the NbO₂F–BaF₂–InF₃–ErF₃ and CdNbOF₅–BaF₂–InF₃ systems // Nanosystems: Phys. Chem. Math. 2020. Vol. 11 (3). P. 0–4. https://doi.org/10.17586/2220-8054-2020-11-3-333-337
- 10. Ignatieva L.N., Savchenko N.N., Marchenko Yu.V., Mashchenko V.A., Mirochnik A.G., Galkin K.N. New Glasses in the $ZnNbOF_5-BaF_2-ErF_3$ system // Indian J. Phys. 2025. Vol. 1. https://doi.org/10.1007/s12648-024-03531-7
- 11. Ignatieva L.N., Savchenko N.N., Marchenko Yu.V., Mashchenko V.A., Mirochnik A.G., Pikalov D.O. Glasses in the MnNbOF₅–BaF₇–ErF₃ system // J. Non-Cryst. Solids. 2025. (In print).
- 12. Zhang X., Gong M. A new red-emitting Ce³⁺, Mn²⁺-doped barium lithium silicate phosphor for NUV LED application // Mater. Lett. 2011. Vol. 65 (10). P. 1756–1758. https://doi.org/10.1016/j.matlet.2011.03.075
- 13. Aseev V., Kolobkova E., Nekrasova Ya., Nikonorov N., Rokhmin A. Manganese luminescence in fluorine-phosphate glasses // Sci. Tech. J. Inf. Technol. Mech. Opt. 2012. Vol. 82 (6). P. 36–39.
- 14. Davidovich R.L., Levchishina T.F., Kaidalova T.A., Sergienko V.I. The synthesis and properties of oxofluoroniobates and fluorotantalates of bivalent metals // J. Less Com. Metals. 1972. Vol. 27 (1). P. 35.
- 15. Ignat'eva L.N., Savchenko N.N., Marchenko Yu.V., Zverev G.A., Buznik V.M. Structure and Crystallization of Glasses in the MnNbOF $_5$ -BaF $_2$ -InF $_3$ System // Rus. J. Inorg. Chem. 2018. Vol. 63 (11). P. 1389–1394. https://doi.org/10.1134/S0036023618110062
- 16. Ignatieva L.N., Surovtsev N.V., Savchenko N.N., Adichtchev S.V., Polyshchuk S.A., Marchenko Yu.V., Bouznik V.M, Glasses in the system of MnNbOF₅–BaF₂–BiF₃–ErF₃ // J. Non-Cryst. Solids. 2011. Vol. 357. P. 3807–3812. https://doi.org/10.1016/j.jnoncrysol.2011.08
- 17. Игнатьева Л.Н. Строение и принципы формирования фторидных стекол по данным квантовой химии и колебательной спектроскопии / дис. . . . д-ра хим. наук. Владивосток, 2000. 270 с.
 - 18. Золин В.Ф., Коренева Л.Г. Редкоземельный зонд в химии и биологии. М.: Наука, 1980. 350 с.
- 19. Lakowicz J.R. Principles of Fluorescence Spectroscopy. Maryland, MD 21201 USA: University of Maryland School of Medicine Baltimore, 1983.
- 20. Blasse G., Grabmaier B.C. Luminescent Materials. New York: Springer, 1994. 234 p. https://doi.org/10.1007/978-3-642-79017-1

REFERENCES

- 1. Mateski M., Poulain Mi., Poulain Ma. Verres aux halogenures de cadmium 1. Verres fluores. *Mat. Res. Bull.* 1982;17:1275–1281.
 - 2. Ishwar D. Aggarwal, Grant Lu. Fluoride glass fiber optics. New York: Acad. Press; 1991. 416 p.
- 3. Doweidar H., El-Egili K., Ramada R.M., Khalil E. Structural studies and properties of $\mathrm{CdF_2-B_2O_3}$ glasses. *J. Non-Cryst. Solids.* 2018;481:494–502. https://doi.org/10.1016/j.jnoncrysol.2017.11.036
- 4. Klouche Bouchaour Z.C., Polain M., Belhadji M., Hager I., Mallawany R.E.I. New oxyfluoroniobate glasses. *J. Non-Cryst. Solids.* 2005;351:816. https://doi.org/10.1016/j.jnoncrysol.2005.01.081
- 5. Polishchuk S.A., Ignat'eva L.N., Marchenko Yu.V., Bouznik V.M. *Glass Phys. Chem.* 2011;37(1):1–20. https://doi.org/10.1134/S108765961101010X
- 6. Ignatieva L.N., Savchenko N.N., Marchenko Yu.V., Sarin S.A. Synthesis, structure and crystallization of glasses in the $CdNbOF_5$ – BaF_2 – InF_3 system. *Ceram. Int.* 2019;45:17737–17741. https://doi.org/10.1016/j.ceramint.2019.05.343
- 7. Ignatieva L.N., Savchenko N.N., Marchenko Yu.V., Mashchenko V.A., Sarin S.A. New glassea in the systems of MNbOF₅–BaF₇–InF₃ (M Mn, Cd, Zn). *Vestnik of the FEB RAS*. 2024;(6):187–202. (In Russ.).
- 8. Ignatieva L.N., Savchenko N.N., Marchenko Yu.V., Mashchenko V.A., Mirochnik A.G., Galkin K.N. New Glasses in the ZnNbOF₅–BaF₂–InF₃ system. *J. Non-Cryst. Solids.* 2024;623. 1226919. https://doi.org/10.1016/j.jnoncrysol.2023.122691
- 9. Ignatieva L.N., Savchenko N.N., Marchenko Y.V., Mashchenko V.A., Bouznik V.M. Raman study of glasses in the NbO $_2$ F-BaF $_2$ -InF $_3$ -ErF $_3$ and CdNbOF $_5$ -BaF $_2$ -InF $_3$ systems, *Nanosystems: Phys. Chem. Math.* 2020;11(3):0-4. https://doi.org/10.17586/2220-8054-2020-11-3-333-337

- 10. Ignatieva L.N., Savchenko N.N., Marchenko Yu.V., Mashchenko V.A., Mirochnik A.G., Galkin K.N. New Glasses in the $ZnNbOF_5$ – BaF_2 – ErF_3 system. *Indian J. Phys.* 2025;1. https://doi.org/10.1007/s12648-024-03531-7
- 11. Ignatieva L.N., Savchenko N.N., Marchenko Yu.V., Mashchenko V.A., Mirochnik A.G., Pikalov D.O. Glasses in the MnNbOF₅–BaF₇–ErF₃ system. *J. Non-Cryst. Solids.* 2025. (In print).
- 12. Zhang X., Gong M. A new red-emitting Ce³⁺, Mn²⁺-doped barium lithium silicate phosphor for NUV LED application. *Mater. Lett.* 2011;65(10):1756–1758. https://doi.org/10.1016/j.matlet.2011.03.075
- 13. Aseev V., Kolobkova E., Nekrasova Ya., Nikonorov N., Rokhmin A. Manganese luminescence in fluorine-phosphate glasses. *Sci. Tech. J. Inf. Technol. Mech. Opt.* 2012;82(6):36–39.
- 14. Davidovich R.L., Levchishina T.F., Kaidalova T.A., Sergienko V.I. The synthesis and properties of oxofluoroniobates and fluorotantalates of bivalent metals. *J. Less Com. Metals*. 1972;27(1):35.
- 15. Ignat'eva L.N., Savchenko N.N., Marchenko Yu.V., Zverev G.A., Buznik V.M. Structure and Crystallization of Glasses in the MnNbOF₅–BaF₂–InF₃ System. *Rus. J. Inorg. Chem.* 2018;63(11):1389–1394. https://doi.org/10.1134/S0036023618110062
- 16. Ignatieva L.N., Surovtsev N.V., Savchenko N.N., Adichtchev S.V., Polyshchuk S.A., Marchenko Yu.V., Bouznik V.M. Glasses in the system of MnNbOF₅–BaF₂–BiF₃–ErF₃. *J. Non-Cryst. Solids.* 2011;357:3807–3812. https://doi.org/10.1016/j.jnoncrysol.2011.08
- 17. Ignatieva L.N. Structure and Formation Principles of Fluoride Glasses from the Data of Quantum Chemistry and Vibration Spectroscopy: the doctoral thesis. Vladivostok; 2000. 270 p. (In Russ.).
- 18. Zolin V.F., Koreneva L.G. Rare earth probe in chemistry and biology. Moscow: Nauka; 1980. 350 p. (In Russ.).
- 19. Lakowicz J.R. Principles of Fluorescence Spectroscopy. Maryland, MD 21201 USA: University of Maryland School of Medicine Baltimore; 1983.
- 20. Blasse G., Grabmaier B.C. Luminescent Materials. New York: Springer; 1994. 234 p. https://doi.org/10.1007/978-3-642-79017-1