Особенности длинозависимых изменений кальциевого перехода в миокарде желудочка крыс разного возраста
- Авторы: Лисин Р.В.1, Балакин А.А.1, Кузнецов Д.А.1, Зудова А.И.1, Проценко Ю.Л.1
-
Учреждения:
- Институт иммунологии и физиологии УрО РАН
- Выпуск: Том 111, № 9 (2025)
- Страницы: 1526-1544
- Раздел: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://journal-vniispk.ru/0869-8139/article/view/352696
- DOI: https://doi.org/10.7868/S2658655X25090077
- ID: 352696
Цитировать
Аннотация
Ключевые слова
Об авторах
Р. В. Лисин
Институт иммунологии и физиологии УрО РАН
Email: lisin.ruslan@gmail.com
Екатеринбург, Россия
А. А. Балакин
Институт иммунологии и физиологии УрО РАНЕкатеринбург, Россия
Д. А. Кузнецов
Институт иммунологии и физиологии УрО РАНЕкатеринбург, Россия
А. И. Зудова
Институт иммунологии и физиологии УрО РАНЕкатеринбург, Россия
Ю. Л. Проценко
Институт иммунологии и физиологии УрО РАНЕкатеринбург, Россия
Список литературы
- Saner H (2005) [Cardiovascular system and aging]. Ther Umsch 62: 827–835. https://doi.org/10.1024/0040-5930.62.12.827
- Иванов ДО, Орел ВИ, Александрович ЮС, Пшениснов КВ, Ломовцева РХ (2019) Заболевания сердечно сосудистой системы как причина смертности в Российской Федерации: пути решения проблемы. Медицина и организация здравоохранения 4: 4–12. [Ivanov DO, Orel VI, Aleksandrovich YuS, Pshenisnov KV, Lomovceva RH (2019) Cardiovascular diseases as a cause of mortality in the Russian Federation: ways to solve the problem. Medicina i organizaciya zdravoohraneniya 4: 4–12. (In Russ)].
- Herman AB, Occean JR, Sen P (2021) Epigenetic dysregulation in cardiovascular aging and disease. J Cardiovasc Aging 1: 10. https://doi.org/10.20517/jca.2021.16
- Lakatta EG, Yin FC (1982) Myocardial aging: functional alterations and related cellular mechanisms. Am J Physiol 242: H927–H941. https://doi.org/10.1152/ajpheart.1982.242.6.H927
- Weisser-Thomas J, Nguyen Q, Schuettel M, Thomas D, Dreiner U, Grohé C, Meyer R (2007) Age and hypertrophy related changes in contractile post-rest behavior and action potential properties in isolated rat myocytes. Age (Dordr) 29: 205–217. https://doi.org/10.1007/s11357-007-9040-1
- Kusunose K, Yamada H, Nishio S, Ishii A, Hirata Y, Seno H, Saijo Y, Ise T, Yamaguchi K, Yagi S, Soeki T, Wakatsuki T, Sata M (2017) RV Myocardial Strain During Pre-Load Augmentation Is Associated With Exercise Capacity in Patients With Chronic HF. JACC Cardiovasc Imaging 10: 1240–1249. https://doi.org/10.1016/j.jcmg.2017.03.022
- Schwinger RH, Böhm M, Koch A, Schmidt U, Morano I, Eissner HJ, Uberfuhr P, Reichart B, Erdmann E (1994) The failing human heart is unable to use the Frank-Starling mechanism. Circulat Res 74(5): 959–969. https://doi.org/10.1161/01.RES.74.5.959
- Kosta S, Dauby PC (2021) Frank-Starling mechanism, fluid responsiveness, and length-dependent activation: Unravelling the multiscale behaviors with an in silico analysis. PLoS Comput Biol 17: e1009469. https://doi.org/10.1371/journal.pcbi.1009469
- Wang X, Kallish N, Solaro RJ, Dong W-J (2025) Ca2+ sensitivity changes in skinned myocardial fibers induced by myosin–actin crossbridge-independent sarcomere stretch: Role of N-domain of MyBP-C. J Mol Cell Cardiol 202: 24–34. https://doi.org/10.1016/j.yjmcc.2025.03.004
- Лисин РВ, Балакин АА, Зудова АИ, Проценко ЮЛ (2025) Исследование влияния длинозависимых изменений кинетики миозиновых мостиков на переходные процессы Са2+ в миокарде правого предсердия и правого желудочка крыс. Рос физиол журн им ИМ Сеченова 111(3): 522–541. [Lisin RV, Balakin AA, Zudova AI, Protsenko YuL (2025) Effect of Length-Dependent Changes in Myosin Cross-Bridge Kinetics on Calcium Transients in Right Atrial and Right Ventricular Myocardium of Rats. Russ J Physiol 111(3): 522–541. (In Russ)]. https://doi.org/10.31857/S0869813925030102
- The length-dependent activation of contraction is equally impaired in impuberal male and female rats in monocrotaline-induced right ventricular failure – Lookin – 2015 – Clinical and Experimental Pharmacology and Physiology – Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1111/1440-1681.12471. Accessed 7 Aug 2025
- Blanchard EM, Smith GL, Allen DG, Alpert NR (1990) The effects of 2,3-butanedione monoxime on initial heat, tension, and aequorin light output of ferret papillary muscles. Pflugers Arch 416: 219–221. https://doi.org/10.1007/BF00370248
- Kettlewell S, Walker NL, Cobbe SM, Burton FL, Smith GL (2004) The electrophysiological and mechanical effects of 2,3-butane-dione monoxime and cytochalasin-D in the Langendorff perfused rabbit heart. Exp Physiol 89: 163–172. https://doi.org/10.1113/expphysiol.2003.026732
- Lookin O (2020) The use of Ca-transient to evaluate Ca2+ utilization by myofilaments in living cardiac muscle. Clin Exp Pharmacol Physiol 47: 1824–1833. https://doi.org/10.1111/1440-1681.13376
- Kiriazis H, Gibbs CL (2000) Effects of aging on the work output and efficiency of rat papillary muscle. Cardiovasc Res 48: 111–119. https://doi.org/10.1016/s0008-6363(00)00144-9
- Weisser-Thomas J, Nguyen Q, Schuettel M, Thomas D, Dreiner U, Grohé C, Meyer R (2007) Age and hypertrophy related changes in contractile post-rest behavior and action potential properties in isolated rat myocytes. Age (Dordr) 29: 205–217. https://doi.org/10.1007/s11357-007-9040-1
- Huang C, Ding W, Li L, Zhao D (2006) Differences in the aging-associated trends of the monophasic action potential duration and effective refractory period of the right and left atria of the rat. Circ J 70: 352–357. https://doi.org/10.1253/circj.70.352
- Szegedi V, Tiszlavicz Á, Furdan S, Douida A, Bakos E, Barzo P, Tamas G, Szucs A, Lamsa K (2024) Aging-associated weakening of the action potential in fast-spiking interneurons in the human neocortex. J Biotechnol 389: 1–12. https://doi.org/10.1016/j.jbiotec.2024.04.020
- Escande D, Loisance D, Planche C, Coraboeuf E (1985) Age-related changes of action potential plateau shape in isolated human atrial fibers. Am J Physiol 249: H843–H850. https://doi.org/10.1152/ajpheart.1985.249.4.H843
- Walker KE, Lakatta EG, Houser SR (1993) Age associated changes in membrane currents in rat ventricular myocytes. Cardiovasc Res 27: 1968–1977. https://doi.org/10.1093/cvr/27.11.1968
- Kaplan P, Jurkovicova D, Babusikova E, Hudecova S, Racay P, Sirova M, Lehotsky J, Drgova A, Dobrota D, Krizanova O (2007) Effect of aging on the expression of intracellular Ca(2+) transport proteins in a rat heart. Mol Cell Biochem 301: 219–226. https://doi.org/10.1007/s11010-007-9414-9
- Taffet GE, Tate CA (1993) CaATPase content is lower in cardiac sarcoplasmic reticulum isolated from old rats. Am J Physiol 264: H1609–H1614. https://doi.org/10.1152/ajpheart.1993.264.5.H1609
- Xu A, Narayanan N (1998) Effects of aging on sarcoplasmic reticulum Ca2+-cycling proteins and their phosphorylation in rat myocardium. Am J Physiol 275: H2087–H2094. https://doi.org/10.1152/ajpheart.1998.275.6.H2087
- Froehlich JP, Lakatta EG, Beard E, Spurgeon HA, Weisfeldt ML, Gerstenblith G (1978) Studies of sarcoplasmic reticulum function and contraction duration in young adult and aged rat myocardium. J Mol Cell Cardiol 10: 427–438. https://doi.org/10.1016/0022-2828(78)90364-4
- Orchard CH, Lakatta EG (1985) Intracellular calcium transients and developed tension in rat heart muscle. A mechanism for the negative interval-strength relationship. J Gen Physiol 86: 637–651. https://doi.org/10.1085/jgp.86.5.637
- Xiao RP, Spurgeon HA, O’Connor F, Lakatta EG (1994) Age-associated changes in beta-adrenergic modulation on rat cardiac excitation-contraction coupling. J Clin Invest 94: 2051–2059. https://doi.org/10.1172/JCI117559
- Nitahara JA, Cheng W, Liu Y, Li B, Leri A, Li P, Mogul D, Gambert SR, Kajstura J, Anversa P (1998) Intracellular calcium, DNase activity and myocyte apoptosis in aging Fischer 344 rats. J Mol Cell Cardiol 30: 519–535. https://doi.org/10.1006/jmcc.1997.0616
- Fitzsimons DP, Patel JR, Moss RL (1999) Aging-dependent depression in the kinetics of force development in rat skinned myocardium. Am J Physiol 276: H1511–H1519. https://doi.org/10.1152/ajpheart.1999.276.5.H1511
- Van der Velden J, Moorman AF, Stienen GJ (1998) Age-dependent changes in myosin composition correlate with enhanced economy of contraction in guinea-pig hearts. J Physiol 507(Pt 2): 497–510. https://doi.org/10.1111/j.1469-7793.1998.497bt.x
Дополнительные файлы


