Current status and future directions of systemic therapy in high-grade bone sarcomas
- 作者: Machak G.N.1
-
隶属关系:
- Priorov Central Institute of Traumatology and Orthopedic
- 期: 卷 31, 编号 2 (2024)
- 页面: 229-249
- 栏目: Reviews
- URL: https://journal-vniispk.ru/0869-8678/article/view/265254
- DOI: https://doi.org/10.17816/vto624147
- ID: 265254
如何引用文章
详细
Chemotherapy combined with radical surgery is the gold standard treatment for high-grade bone sarcomas. The number of cured patients has remained unchanged over the past decades. Approximately 30% of patients with stage IIB tumors, 70% with stage IIIB tumors, and more than 80% of recurrent bone sarcomas are resistant to currently used chemotherapy regimens and ultimately die from the disease. Currently available targeted therapies, mainly multiple tyrosine kinase inhibitors, are not curative, but a significant proportion of patients with advanced sarcomas achieve disease stabilization. This opens up the possibility of combining local and systemic treatments to consolidate clinical response, reduce tumor burden, and prolong progression-free interval. The optimal combination of systemic and local treatment methods (surgery, radiation therapy, radiosurgery) makes it possible to impact metastatic lesions, transforming an advanced tumor process into a chronic disease in responding patients. Early detection of relapse may improve the effectiveness of systemic treatment due to low tumor burden and lack of established resistance mechanisms. Future directions in the field of advanced sarcoma include the development of personalized treatment approaches and further studies of tumor biology based on “omics” technologies.
作者简介
Gennady Machak
Priorov Central Institute of Traumatology and Orthopedic
编辑信件的主要联系方式.
Email: machak.gennady@mail.ru
ORCID iD: 0000-0003-1222-5066
SPIN 代码: 4020-1743
MD, Dr. Sci. (Med.)
俄罗斯联邦, 10 Priorova str., Moscow, 115172参考
- Manning G, Plowman GD, Hunter T, Sudarsanam S. Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci. 2002;27(10):514–20. doi: 10.1016/s0968-0004(02)02179-5
- Meltzer PS, Helman LJ. New Horizons in the Treatment of Osteosarcoma. N Engl J Med. 2021;385(22):2066–2076. doi: 10.1056/NEJMra2103423
- Chen X, Bahrami A, Pappo A, et al.; St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 2014;7(1):104–12. doi: 10.1016/j.celrep.2014.03.003
- Kovac M, Blattmann C, Ribi S, et al. Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat Commun. 2015;6:8940. doi: 10.1038/ncomms9940
- Suehara Y, Alex D, Bowman A, et al. Clinical Genomic Sequencing of Pediatric and Adult Osteosarcoma Reveals Distinct Molecular Subsets with Potentially Targetable Alterations. Clin Cancer Res. 2019;25(21):6346–6356. doi: 10.1158/1078-0432.CCR-18-4032
- Fordham AM, Ekert PG, Fleuren EDG. Precision medicine and phosphoproteomics for the identification of novel targeted therapeutic avenues in sarcomas. Biochim Biophys Acta Rev Cancer. 2021;1876(2):188613. doi: 10.1016/j.bbcan.2021.188613
- Mishra MN, Sharma R, Chandavarkar V, Premalatha BP. Pathogenesis of Ewing sarcoma: Existing and emerging trends. Advances in Cancer Biology — Metastasis. 2021;2(6):100008. doi: 10.1016/j.adcanc.2021.100008
- Bovée JV, Bloem JL, Flangan AM, Nielsen GP, Yoshida A. Central chondrosarcoma, grades 2 and 3. In: The WHO Classification of Tumours Editorial Board: WHO classification Soft Tissue and Bone Tumours. 5th ed. Lyon: IARC Press; 2020.
- Bovée JV, Cleton-Jansen AM, Taminiau AH, Hogendoorn PC. Emerging pathways in the development of chondrosarcoma of bone and implications for targeted treatment. Lancet Oncol. 2005;6(8):599–607. doi: 10.1016/S1470-2045(05)70282-5
- Lin CY, Tzeng HE, Li TM, et al. WISP-3 inhibition of miR-452 promotes VEGF-A expression in chondrosarcoma cells and induces endothelial progenitor cells angiogenesis. Oncotarget. 2017;8(24):39571–39581. doi: 10.18632/oncotarget.17142
- Samuel AM, Costa J, Lindskog DM. Genetic alterations in chondrosarcomas — keys to targeted therapies? Cell Oncol. 2014;37(2):95–105. doi: 10.1007/s13402-014-0166-8
- Vujovic S, Henderson S, Presneau N, et al. Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. J Pathol. 2006;209(2):157–65. doi: 10.1002/path.1969
- Tirabosco R, Mangham DC, Rosenberg AE, et al. Brachyury expression in extra-axial skeletal and soft tissue chordomas: a marker that distinguishes chordoma from mixed tumor/myoepithelioma/parachordoma in soft tissue. Am J Surg Pathol. 2008;32(4):572–80. doi: 10.1097/PAS.0b013e31815b693a
- Presneau N, Shalaby A, Ye H, et al. Role of the transcription factor T (brachyury) in the pathogenesis of sporadic chordoma: a genetic and functional-based study. J Pathol. 2011;223(3):327–35. doi: 10.1002/path.2816
- Tarpey PS, Behjati S, Young MD, et al. The driver landscape of sporadic chordoma. Nat Commun. 2017;8(1):890. doi: 10.1038/s41467-017-01026-0
- Yang XR, Ng D, Alcorta DA, et al. T (brachyury) gene duplication confers major susceptibility to familial chordoma. Nat Genet. 2009;41(11):1176–8. doi: 10.1038/ng.454
- Pillay N, Plagnol V, Tarpey PS, et al. A common single-nucleotide variant in T is strongly associated with chordoma. Nat Genet. 2012;44(11):1185–7. doi: 10.1038/ng.2419
- Nelson AC, Pillay N, Henderson S, et al. An integrated functional genomics approach identifies the regulatory network directed by brachyury (T) in chordoma. J Pathol. 2012;228(3):274–85. doi: 10.1002/path.4082
- Shalaby A, Presneau N, Ye H, et al. The role of epidermal growth factor receptor in chordoma pathogenesis: a potential therapeutic target. J Pathol. 2011;223(3):336–46. doi: 10.1002/path.2818
- Scheipl S, Barnard M, Cottone L, et al. EGFR inhibitors identified as a potential treatment for chordoma in a focused compound screen. J Pathol. 2016;239(3):320–34. doi: 10.1002/path.4729
- Flanagan AM, Larousserie F, O’Donnell PG, Yoshida A. Giant cell tumor of bone. In: The WHO Classification of Tumours Editorial Board: WHO classification Soft Tissue and Bone Tumours. 5th ed. Lyon: IARC Press; 2020. Р. 440–47.
- Trapeznikov NN, Aliyev MD, Machak GN, et al. Treatment of osteosarcoma of the extremities at the turn of the century. Half a century of research experience. Vestnik Rossijskoj Akademii medicinskih nauk. 2001;(9):46–49. (In Russ).
- Smeland S, Bielack SS, Whelan J, et al. Survival and prognosis with osteosarcoma: outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur J Cancer. 2019;109:36–50. doi: 10.1016/j.ejca.2018.11.027
- Moiseenko VM. Practical recommendations of the Russian Society of Clinical Oncology. Moscow; 2021. Р. 259–271. (In Russ).
- Machak GN. Modern possibilities and prospects of combined treatment of osteosarcoma [dissertation abstract]. Moscow; 2007. 47 p. EDN: NJAREL
- Bacci G, Mercuri M, Longhi A, et al. Grade of chemotherapy-induced necrosis as a predictor of local and systemic control in 881 patients with non-metastatic osteosarcoma of the extremities treated with neoadjuvant chemotherapy in a single institution. Eur J Cancer. 2005;41(14):2079–85. doi: 10.1016/j.ejca.2005.03.036
- Marina NM, Smeland S, Bielack SS, et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): an open-label, international, randomised controlled trial. Lancet Oncol. 2016;17(10):1396–1408. doi: 10.1016/S1470-2045(16)30214-5
- Ferrari S, Meazza C, Palmerini E, et al. Nonmetastatic osteosarcoma of the extremity. Neoadjuvant chemotherapy with methotrexate, cisplatin, doxorubicin and ifosfamide. An Italian Sarcoma Group study (ISG/OS-Oss). Tumori. 2014;100(6):612–9. doi: 10.1700/1778.19262
- Palmerini E, Meazza C, Tamburini A, et al. Phase 2 study for nonmetastatic extremity high-grade osteosarcoma in pediatric and adolescent and young adult patients with a risk-adapted strategy based on ABCB1/P-glycoprotein expression: An Italian Sarcoma Group trial (ISG/OS-2). Cancer. 2022;128(10):1958–1966. doi: 10.1002/cncr.34131
- Bacci G, Briccoli A, Ferrari S, et al. Neoadjuvant chemotherapy for osteosarcoma of the extremities with synchronous lung metastases: treatment with cisplatin, adriamycin and high dose of methotrexate and ifosfamide. Oncol Rep. 2000;7(2):339–46. doi: 10.3892/or.7.2.339
- Daw NC, Billups CA, Rodriguez-Galindo C, et al. Metastatic osteosarcoma. Cancer. 2006;106(2):403–12. doi: 10.1002/cncr.21626
- Kager L, Zoubek A, Pötschger U, et al.; Cooperative German-Austrian-Swiss Osteosarcoma Study Group. Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol. 2003;21(10):2011–8. doi: 10.1200/JCO.2003.08.132
- Virbel G, Cox DG, Olland A, et al. Outcome of lung oligometastatic patients treated with stereotactic body irradiation. Front Oncol. 2022;12:945189. doi: 10.3389/fonc.2022.945189
- Daw NC, Chou AJ, Jaffe N, et al. Recurrent osteosarcoma with a single pulmonary metastasis: a multi-institutional review. Br J Cancer. 2015;112(2):278–82. doi: 10.1038/bjc.2014.585
- Kempf-Bielack B, Bielack SS, Jürgens H, et al. Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J Clin Oncol. 2005;23(3):559–68. doi: 10.1200/JCO.2005.04.063
- Brennan B, Kirton L, Marec-Bérard P, et al. Comparison of two chemotherapy regimens in patients with newly diagnosed Ewing sarcoma (EE2012): an open-label, randomised, phase 3 trial. Lancet. 2022;400(10362):1513–1521. doi: 10.1016/S0140-6736(22)01790-1
- Womer RB, West DC, Krailo MD, et al. Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(33):4148–54. doi: 10.1200/JCO.2011.41.5703
- Chawla S, Blay JY, Rutkowski P, et al. Denosumab in patients with giant-cell tumour of bone: a multicentre, open-label, phase 2 study. Lancet Oncol. 2019;20(12):1719–1729. doi: 10.1016/S1470-2045(19)30663-1
- Tsukamoto S, Mavrogenis AF, Kido A, Errani C. Current Concepts in the Treatment of Giant Cell Tumors of Bone. Cancers (Basel). 2021;13(15):3647. doi: 10.3390/cancers13153647
- Morii R, Tsukamoto S, Righi A, et al. Effect of Adjuvant Chemotherapy on Localized Malignant Giant Cell Tumor of Bone: A Systematic Review. Cancers (Basel). 2021;13(21):5410. doi: 10.3390/cancers13215410
- Fleuren EDG, Vlenterie M, van der Graaf WTA. Recent advances on anti-angiogenic multi-receptor tyrosine kinase inhibitors in osteosarcoma and Ewing sarcoma. Front Oncol. 2023;13:1013359. doi: 10.3389/fonc.2023.1013359
- Long Z, Huang M, Liu K, et al. Assessment of Efficiency and Safety of Apatinib in Advanced Bone and Soft Tissue Sarcomas: A Systematic Review and Meta-Analysis. Front Oncol. 2021;11:662318. doi: 10.3389/fonc.2021.662318
- Gaspar N, Campbell-Hewson Q, Gallego Melcon S, et al. Phase I/II study of single-agent lenvatinib in children and adolescents with refractory or relapsed solid malignancies and young adults with osteosarcoma (ITCC-050)☆. ESMO Open. 2021;6(5):100250. doi: 10.1016/j.esmoop.2021.100250
- Nakahara Y, Fukui T, Katono K, et al. Pneumothorax during Pazopanib Treatment in Patients with Soft-Tissue Sarcoma: Two Case Reports and a Review of the Literature. Case Rep Oncol. 2017;10(1):333–338. doi: 10.1159/000463380
- Groenland SL, van Eerden RAG, Westerdijk K, et al.; Dutch Pharmacology Oncology Group (DPOG). Therapeutic drug monitoring-based precision dosing of oral targeted therapies in oncology: a prospective multicenter study. Ann Oncol. 2022;33(10):1071–1082. doi: 10.1016/j.annonc.2022.06.010
- Liu JY, Zhu BR, Wang YD, Sun X. The efficacy and safety of Apatinib mesylate in the treatment of metastatic osteosarcoma patients who progressed after standard therapy and the VEGFR2 gene polymorphism analysis. Int J Clin Oncol. 2020;25(6):1195–1205. doi: 10.1007/s10147-020-01644-7
- Tap WD, Villalobos VM, Cote GM, et al. Phase I Study of the Mutant IDH1 Inhibitor Ivosidenib: Safety and Clinical Activity in Patients with Advanced Chondrosarcoma. J Clin Oncol. 2020;38(15):1693–1701. doi: 10.1200/JCO.19.02492
- Tian Z, Niu X, Yao W. Receptor Tyrosine Kinases in Osteosarcoma Treatment: Which Is the Key Target? Front Oncol. 2020;10:1642. doi: 10.3389/fonc.2020.01642
- Seto T, Song MN, Trieu M, et al. Real-World Experiences with Pazopanib in Patients with Advanced Soft Tissue and Bone Sarcoma in Northern California. Med Sci (Basel). 2019;7(3):48. doi: 10.3390/medsci7030048
- Safwat A, Boysen A, Lücke A, Rossen P. Pazopanib in metastatic osteosarcoma: significant clinical response in three consecutive patients. Acta Oncol. 2014;53(10):1451–4. doi: 10.3109/0284186X.2014.948062
- Longhi A, Paioli A, Palmerini E, et al. Pazopanib in relapsed osteosarcoma patients: report on 15 cases. Acta Oncol. 2019;58(1):124–128. doi: 10.1080/0284186X.2018.1503714
- Aggerholm-Pedersen N, Rossen P, Rose H, Safwat A. Pazopanib in the Treatment of Bone Sarcomas: Clinical Experience. Transl Oncol. 2020;13(2):295–299. doi: 10.1016/j.tranon.2019.12.001
- Elete KR, Albritton KH, Akers LJ, Basha R, Ray A. Response to Pazopanib in Patients with Relapsed Osteosarcoma. J Pediatr Hematol Oncol. 2020;42(4):e254–e257. doi: 10.1097/MPH.0000000000001375
- Frankel P, Ruel C, Uche A, et al. Pazopanib in Patients with Osteosarcoma Metastatic to the Lung: Phase 2 Study Results and the Lessons for Tumor Measurement. J Oncol. 2022;2022:3691025. doi: 10.1155/2022/3691025
- Schulte B, Mohindra N, Milhem M, et al. Phase II study of pazopanib with oral topotecan in patients with metastatic and non-resectable soft tissue and bone sarcomas. Br J Cancer. 2021;125(4):528–533. doi: 10.1038/s41416-021-01448-0
- Grignani G, Palmerini E, Dileo P, et al. A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: an Italian Sarcoma Group study. Ann Oncol. 2012;23(2):508–16. doi: 10.1093/annonc/mdr151
- Raciborska A, Bilska K. Sorafenib in patients with progressed and refractory bone tumors. Med Oncol. 2018;35(10):126. doi: 10.1007/s12032-018-1180-x
- Armstrong AE, Walterhouse DO, Leavey PJ, Reichek J, Walz AL. Prolonged response to sorafenib in a patient with refractory metastatic osteosarcoma and a somatic PDGFRA D846V mutation. Pediatr Blood Cancer. 2019;66(1):e27493. doi: 10.1002/pbc.27493
- Grignani G, Palmerini E, Ferraresi V, et al.; Italian Sarcoma Group. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol. 2015;16(1):98–107. doi: 10.1016/S1470-2045(14)71136-2
- Fedenko AA, Senzhapova E, Aliev M, Dzampaev A, Bokhyan B. Everolimus/sorafenib combination in the treatment of refractory pediatric osteosarcomas: Single center experience. J Clin Oncol. 2016;34(suppl):e22501.
- Federico SM, Caldwell KJ, McCarville MB, et al. Phase I expansion cohort to evaluate the combination of bevacizumab, sorafenib and low-dose cyclophosphamide in children and young adults with refractory or recurrent solid tumours. Eur J Cancer. 2020;132:35–42. doi: 10.1016/j.ejca.2020.03.010
- Duffaud F, Mir O, Boudou-Rouquette P, et al.; French Sarcoma Group. Efficacy and safety of regorafenib in adult patients with metastatic osteosarcoma: a non-comparative, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol. 2019;20(1):120–133. doi: 10.1016/S1470-2045(18)30742-3
- Davis LE, Bolejack V, Ryan CW, et al. Randomized Double-Blind Phase II Study of Regorafenib in Patients With Metastatic Osteosarcoma. J Clin Oncol. 2019;37(16):1424–1431. doi: 10.1200/JCO.18.02374
- Gliksberg A, Fraum A, Aguina MM, Schmidt ML, Kent P. Regorafenib for progressive relapsed mestastatic osteosarcoma in an adolescent. 2020 CTOS Annual Meeting Final Program Abstracts. 2020.
- Chuk MK, Widemann BC, Minard CG, et al. A phase 1 study of cabozantinib in children and adolescents with recurrent or refractory solid tumors, including CNS tumors: Trial ADVL1211, a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2018;65(8):e27077. doi: 10.1002/pbc.27077
- Italiano A, Mir O, Mathoulin-Pelissier S, et al. Cabozantinib in patients with advanced Ewing sarcoma or osteosarcoma (CABONE): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2020;21(3):446–455. doi: 10.1016/S1470-2045(19)30825-3
- Tang L, Niu X, Wang Z, et al. Anlotinib for Recurrent or Metastatic Primary Malignant Bone Tumor: A Multicenter, Single-Arm Trial. Front Oncol. 2022;12:811687. doi: 10.3389/fonc.2022.811687
- Yao W, Zhang P, Wang X, et al. Efficacy and safety of anlotinib hydrochloride in the treatment of advanced bone and soft tissue sarcoma after failure of first-line chemotherapy. J Clin Oncol. 2021;39(15_suppl):e23504. doi: 10.1200/JCO.2021.39.15_suppl.e23504
- Tian Z, Liu H, Zhang F, et al. Retrospective review of the activity and safety of apatinib and anlotinib in patients with advanced osteosarcoma and soft tissue sarcoma. Invest New Drugs. 2020;38(5):1559–69. doi: 10.1007/s10637-020-00912-7
- Gaspar N, Venkatramani R, Hecker-Nolting S, et al. Lenvatinib with etoposide plus ifosfamide in patients with refractory or relapsed osteosarcoma (ITCC-050): a multicentre, open-label, multicohort, phase 1/2 study. Lancet Oncol. 2021;22(9):1312–1321. doi: 10.1016/S1470-2045(21)00387-9
- Dembla V, Groisberg R, Hess K, et al. Outcomes of patients with sarcoma enrolled in clinical trials of pazopanib combined with histone deacetylase, mTOR, Her2, or MEK inhibitors. Sci Rep. 2017;7(1):15963. doi: 10.1038/s41598-017-13114-8
- Gill J, Gorlick R. Advancing therapy for osteosarcoma. Nat Rev Clin Oncol. 2021;18(10):609–624. doi: 10.1038/s41571-021-00519-8
- Flores G, Grohar PJ. One oncogene, several vulnerabilities: EWS/FLI targeted therapies for Ewing sarcoma. J Bone Oncol. 2021;31:100404. doi: 10.1016/j.jbo.2021.100404
- Grohar PJ, Glod J, Peer CJ, et al. A phase I/II trial and pharmacokinetic study of mithramycin in children and adults with refractory Ewing sarcoma and EWS-FLI1 fusion transcript. Cancer Chemother Pharmacol. 2017;80(3):645–652. doi: 10.1007/s00280-017-3382-x
- Subbiah V, Braña I, Longhi A, et al. Antitumor Activity of Lurbinectedin, a Selective Inhibitor of Oncogene Transcription, in Patients with Relapsed Ewing Sarcoma: Results of a Basket Phase II Study. Clin Cancer Res. 2022;28(13):2762–2770. doi: 10.1158/1078-0432.CCR-22-0696
- Casey DL, Lin TY, Cheung NV. Exploiting Signaling Pathways and Immune Targets Beyond the Standard of Care for Ewing Sarcoma. Front Oncol. 2019;9:537. doi: 10.3389/fonc.2019.00537
- Wagner LM, Fouladi M, Ahmed A, et al. Phase II study of cixutumumab in combination with temsirolimus in pediatric patients and young adults with recurrent or refractory sarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2015;62(3):440–4. doi: 10.1002/pbc.25334
- Tamura A, Yamamoto N, Nino N, et al. Pazopanib maintenance therapy after tandem high-dose chemotherapy for disseminated Ewing sarcoma. Int Cancer Conf J. 2019;8(3):95–100. doi: 10.1007/s13691-019-00362-w
- Alcindor T. Response of refractory Ewing sarcoma to pazopanib. Acta Oncol. 2015;54(7):1063–4. doi: 10.3109/0284186X.2014.971938
- Attia S, Bolejack V, Ganjoo KN, et al. A phase II trial of regorafenib in patients with advanced Ewing sarcoma and related tumors of soft tissue and bone: SARC024 trial results. Cancer Med. 2023;12(2):1532–1539. doi: 10.1002/cam4.5044
- Duffaud F, Blay JY, Mir O, et al. LBA68 results of the randomized, placebo (PL)-controlled phase II study evaluating the efficacy and safety of regorafenib (REG) in patients (pts) with metastatic relapsed Ewing sarcoma (ES), on behalf of the French sarcoma group (FSG) and UNICANCER. Ann Oncol. 2020;31 Suppl 4:S1199. doi: 10.1016/j.annonc.2020.08.2309
- Xu J, Xie L, Sun X, et al. Anlotinib, Vincristine, and Irinotecan for Advanced Ewing Sarcoma After Failure of Standard Multimodal Therapy: A Two-Cohort, Phase Ib/II Trial. Oncologist. 2021;26(7):e1256-e1262. doi: 10.1002/onco.13726
- Bernstein-Molho R, Kollender Y, Issakov J, et al. Clinical activity of mTOR inhibition in combination with cyclophosphamide in the treatment of recurrent unresectable chondrosarcomas. Cancer Chemother Pharmacol. 2012;70(6):855–60. doi: 10.1007/s00280-012-1968-x
- Alemany R, Moura DS, Redondo A, et al. Nilotinib as Coadjuvant Treatment with Doxorubicin in Patients with Sarcomas: A Phase I Trial of the Spanish Group for Research on Sarcoma. Clin Cancer Res. 2018;24(21):5239–5249. doi: 10.1158/1078-0432.CCR-18-0851
- Chow W, Frankel P, Ruel C, et al. Results of a prospective phase 2 study of pazopanib in patients with surgically unresectable or metastatic chondrosarcoma. Cancer. 2020;126(1):105–111. doi: 10.1002/cncr.32515
- Duffaud F, Italiano A, Bompas E, et al.; French Sarcoma Group. Efficacy and safety of regorafenib in patients with metastatic or locally advanced chondrosarcoma: Results of a non-comparative, randomised, double-blind, placebo controlled, multicentre phase II study. Eur J Cancer. 2021;150:108–118. doi: 10.1016/j.ejca.2021.03.039
- Jones RL, Katz D, Loggers ET, et al. Clinical benefit of antiangiogenic therapy in advanced and metastatic chondrosarcoma. Med Oncol. 2017;34(10):167. doi: 10.1007/s12032-017-1030-2
- Tsavaris O, Economopoulou P, Kotsantis I, et al. Clinical Benefit of Pazopanib in a Patient with Metastatic Chondrosarcoma: A Case Report and Review of the Literature. Front Oncol. 2018;8:45. doi: 10.3389/fonc.2018.00045
- Schuetze SM, Bolejack V, Choy E, et al. Phase 2 study of dasatinib in patients with alveolar soft part sarcoma, chondrosarcoma, chordoma, epithelioid sarcoma, or solitary fibrous tumor. Cancer. 2017;123(1):90–97. doi: 10.1002/cncr.30379
- Grignani G, Palmerini E, Stacchiotti S, et al. A phase 2 trial of imatinib mesylate in patients with recurrent nonresectable chondrosarcomas expressing platelet-derived growth factor receptor-α or -β: An Italian Sarcoma Group study. Cancer. 2011;117(4):826–31. doi: 10.1002/cncr.25632
- Polychronidou G, Karavasilis V, Pollack SM, et al. Novel therapeutic approaches in chondrosarcoma. Future Oncol. 2017;13(7):637–648. doi: 10.2217/fon-2016-0226
- Miwa S, Yamamoto N, Hayashi K, et al. Therapeutic Targets and Emerging Treatments in Advanced Chondrosarcoma. Int J Mol Sci. 2022;23(3):1096. doi: 10.3390/ijms23031096
- Meng T, Jin J, Jiang C, et al. Molecular Targeted Therapy in the Treatment of Chordoma: A Systematic Review. Front Oncol. 2019;9:30. doi: 10.3389/fonc.2019.00030
- Hindi N, Casali PG, Morosi C, et al. Imatinib in advanced chordoma: A retrospective case series analysis. Eur J Cancer. 2015;51(17):2609–14. doi: 10.1016/j.ejca.2015.07.038
- Stacchiotti S, Longhi A, Ferraresi V, et al. Phase II study of imatinib in advanced chordoma. J Clin Oncol. 2012;30(9):914–20. doi: 10.1200/JCO.2011.35.3656
- George S, Merriam P, Maki RG, et al. Multicenter phase II trial of sunitinib in the treatment of nongastrointestinal stromal tumor sarcomas. J Clin Oncol. 2009;27(19):3154–60. doi: 10.1200/JCO.2008.20.9890
- Branstetter DG, Nelson SD, Manivel JC, et al. Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone. Clin Cancer Res. 2012;18(16):4415–24. doi: 10.1158/1078-0432.CCR-12-0578
- Palmerini E, Chawla NS, Ferrari S, et al. Denosumab in advanced/unresectable giant-cell tumour of bone (GCTB): For how long? Eur J Cancer. 2017;76:118–124. doi: 10.1016/j.ejca.2017.01.028
- Sambri A, Medellin MR, Errani C, et al. Denosumab in giant cell tumour of bone in the pelvis and sacrum: Long-term therapy or bone resection? J Orthop Sci. 2020;25(3):513–519. doi: 10.1016/j.jos.2019.05.003
- Gaston CL, Grimer RJ, Parry M, et al. Current status and unanswered questions on the use of Denosumab in giant cell tumor of bone. Clin Sarcoma Res. 2016;6(1):15. doi: 10.1186/s13569-016-0056-0
- Rutkowski P, Ferrari S, Grimer RJ, et al. Surgical downstaging in an open-label phase II trial of denosumab in patients with giant cell tumor of bone. Ann Surg Oncol. 2015;22(9):2860–8. doi: 10.1245/s10434-015-4634-9
- Venneker S, van Eenige R, Kruisselbrink AB, et al. Histone Deacetylase Inhibitors as a Therapeutic Strategy to Eliminate Neoplastic “Stromal” Cells from Giant Cell Tumors of Bone. Cancers (Basel). 2022;14(19):4708. doi: 10.3390/cancers14194708
补充文件
