Current status and future directions of systemic therapy in high-grade bone sarcomas

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Chemotherapy combined with radical surgery is the gold standard treatment for high-grade bone sarcomas. The number of cured patients has remained unchanged over the past decades. Approximately 30% of patients with stage IIB tumors, 70% with stage IIIB tumors, and more than 80% of recurrent bone sarcomas are resistant to currently used chemotherapy regimens and ultimately die from the disease. Currently available targeted therapies, mainly multiple tyrosine kinase inhibitors, are not curative, but a significant proportion of patients with advanced sarcomas achieve disease stabilization. This opens up the possibility of combining local and systemic treatments to consolidate clinical response, reduce tumor burden, and prolong progression-free interval. The optimal combination of systemic and local treatment methods (surgery, radiation therapy, radiosurgery) makes it possible to impact metastatic lesions, transforming an advanced tumor process into a chronic disease in responding patients. Early detection of relapse may improve the effectiveness of systemic treatment due to low tumor burden and lack of established resistance mechanisms. Future directions in the field of advanced sarcoma include the development of personalized treatment approaches and further studies of tumor biology based on “omics” technologies.

作者简介

Gennady Machak

Priorov Central Institute of Traumatology and Orthopedic

编辑信件的主要联系方式.
Email: machak.gennady@mail.ru
ORCID iD: 0000-0003-1222-5066
SPIN 代码: 4020-1743

MD, Dr. Sci. (Med.)

俄罗斯联邦, 10 Priorova str., Moscow, 115172

参考

  1. Manning G, Plowman GD, Hunter T, Sudarsanam S. Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci. 2002;27(10):514–20. doi: 10.1016/s0968-0004(02)02179-5
  2. Meltzer PS, Helman LJ. New Horizons in the Treatment of Osteosarcoma. N Engl J Med. 2021;385(22):2066–2076. doi: 10.1056/NEJMra2103423
  3. Chen X, Bahrami A, Pappo A, et al.; St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 2014;7(1):104–12. doi: 10.1016/j.celrep.2014.03.003
  4. Kovac M, Blattmann C, Ribi S, et al. Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat Commun. 2015;6:8940. doi: 10.1038/ncomms9940
  5. Suehara Y, Alex D, Bowman A, et al. Clinical Genomic Sequencing of Pediatric and Adult Osteosarcoma Reveals Distinct Molecular Subsets with Potentially Targetable Alterations. Clin Cancer Res. 2019;25(21):6346–6356. doi: 10.1158/1078-0432.CCR-18-4032
  6. Fordham AM, Ekert PG, Fleuren EDG. Precision medicine and phosphoproteomics for the identification of novel targeted therapeutic avenues in sarcomas. Biochim Biophys Acta Rev Cancer. 2021;1876(2):188613. doi: 10.1016/j.bbcan.2021.188613
  7. Mishra MN, Sharma R, Chandavarkar V, Premalatha BP. Pathogenesis of Ewing sarcoma: Existing and emerging trends. Advances in Cancer Biology — Metastasis. 2021;2(6):100008. doi: 10.1016/j.adcanc.2021.100008
  8. Bovée JV, Bloem JL, Flangan AM, Nielsen GP, Yoshida A. Central chondrosarcoma, grades 2 and 3. In: The WHO Classification of Tumours Editorial Board: WHO classification Soft Tissue and Bone Tumours. 5th ed. Lyon: IARC Press; 2020.
  9. Bovée JV, Cleton-Jansen AM, Taminiau AH, Hogendoorn PC. Emerging pathways in the development of chondrosarcoma of bone and implications for targeted treatment. Lancet Oncol. 2005;6(8):599–607. doi: 10.1016/S1470-2045(05)70282-5
  10. Lin CY, Tzeng HE, Li TM, et al. WISP-3 inhibition of miR-452 promotes VEGF-A expression in chondrosarcoma cells and induces endothelial progenitor cells angiogenesis. Oncotarget. 2017;8(24):39571–39581. doi: 10.18632/oncotarget.17142
  11. Samuel AM, Costa J, Lindskog DM. Genetic alterations in chondrosarcomas — keys to targeted therapies? Cell Oncol. 2014;37(2):95–105. doi: 10.1007/s13402-014-0166-8
  12. Vujovic S, Henderson S, Presneau N, et al. Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. J Pathol. 2006;209(2):157–65. doi: 10.1002/path.1969
  13. Tirabosco R, Mangham DC, Rosenberg AE, et al. Brachyury expression in extra-axial skeletal and soft tissue chordomas: a marker that distinguishes chordoma from mixed tumor/myoepithelioma/parachordoma in soft tissue. Am J Surg Pathol. 2008;32(4):572–80. doi: 10.1097/PAS.0b013e31815b693a
  14. Presneau N, Shalaby A, Ye H, et al. Role of the transcription factor T (brachyury) in the pathogenesis of sporadic chordoma: a genetic and functional-based study. J Pathol. 2011;223(3):327–35. doi: 10.1002/path.2816
  15. Tarpey PS, Behjati S, Young MD, et al. The driver landscape of sporadic chordoma. Nat Commun. 2017;8(1):890. doi: 10.1038/s41467-017-01026-0
  16. Yang XR, Ng D, Alcorta DA, et al. T (brachyury) gene duplication confers major susceptibility to familial chordoma. Nat Genet. 2009;41(11):1176–8. doi: 10.1038/ng.454
  17. Pillay N, Plagnol V, Tarpey PS, et al. A common single-nucleotide variant in T is strongly associated with chordoma. Nat Genet. 2012;44(11):1185–7. doi: 10.1038/ng.2419
  18. Nelson AC, Pillay N, Henderson S, et al. An integrated functional genomics approach identifies the regulatory network directed by brachyury (T) in chordoma. J Pathol. 2012;228(3):274–85. doi: 10.1002/path.4082
  19. Shalaby A, Presneau N, Ye H, et al. The role of epidermal growth factor receptor in chordoma pathogenesis: a potential therapeutic target. J Pathol. 2011;223(3):336–46. doi: 10.1002/path.2818
  20. Scheipl S, Barnard M, Cottone L, et al. EGFR inhibitors identified as a potential treatment for chordoma in a focused compound screen. J Pathol. 2016;239(3):320–34. doi: 10.1002/path.4729
  21. Flanagan AM, Larousserie F, O’Donnell PG, Yoshida A. Giant cell tumor of bone. In: The WHO Classification of Tumours Editorial Board: WHO classification Soft Tissue and Bone Tumours. 5th ed. Lyon: IARC Press; 2020. Р. 440–47.
  22. Trapeznikov NN, Aliyev MD, Machak GN, et al. Treatment of osteosarcoma of the extremities at the turn of the century. Half a century of research experience. Vestnik Rossijskoj Akademii medicinskih nauk. 2001;(9):46–49. (In Russ).
  23. Smeland S, Bielack SS, Whelan J, et al. Survival and prognosis with osteosarcoma: outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur J Cancer. 2019;109:36–50. doi: 10.1016/j.ejca.2018.11.027
  24. Moiseenko VM. Practical recommendations of the Russian Society of Clinical Oncology. Moscow; 2021. Р. 259–271. (In Russ).
  25. Machak GN. Modern possibilities and prospects of combined treatment of osteosarcoma [dissertation abstract]. Moscow; 2007. 47 p. EDN: NJAREL
  26. Bacci G, Mercuri M, Longhi A, et al. Grade of chemotherapy-induced necrosis as a predictor of local and systemic control in 881 patients with non-metastatic osteosarcoma of the extremities treated with neoadjuvant chemotherapy in a single institution. Eur J Cancer. 2005;41(14):2079–85. doi: 10.1016/j.ejca.2005.03.036
  27. Marina NM, Smeland S, Bielack SS, et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): an open-label, international, randomised controlled trial. Lancet Oncol. 2016;17(10):1396–1408. doi: 10.1016/S1470-2045(16)30214-5
  28. Ferrari S, Meazza C, Palmerini E, et al. Nonmetastatic osteosarcoma of the extremity. Neoadjuvant chemotherapy with methotrexate, cisplatin, doxorubicin and ifosfamide. An Italian Sarcoma Group study (ISG/OS-Oss). Tumori. 2014;100(6):612–9. doi: 10.1700/1778.19262
  29. Palmerini E, Meazza C, Tamburini A, et al. Phase 2 study for nonmetastatic extremity high-grade osteosarcoma in pediatric and adolescent and young adult patients with a risk-adapted strategy based on ABCB1/P-glycoprotein expression: An Italian Sarcoma Group trial (ISG/OS-2). Cancer. 2022;128(10):1958–1966. doi: 10.1002/cncr.34131
  30. Bacci G, Briccoli A, Ferrari S, et al. Neoadjuvant chemotherapy for osteosarcoma of the extremities with synchronous lung metastases: treatment with cisplatin, adriamycin and high dose of methotrexate and ifosfamide. Oncol Rep. 2000;7(2):339–46. doi: 10.3892/or.7.2.339
  31. Daw NC, Billups CA, Rodriguez-Galindo C, et al. Metastatic osteosarcoma. Cancer. 2006;106(2):403–12. doi: 10.1002/cncr.21626
  32. Kager L, Zoubek A, Pötschger U, et al.; Cooperative German-Austrian-Swiss Osteosarcoma Study Group. Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol. 2003;21(10):2011–8. doi: 10.1200/JCO.2003.08.132
  33. Virbel G, Cox DG, Olland A, et al. Outcome of lung oligometastatic patients treated with stereotactic body irradiation. Front Oncol. 2022;12:945189. doi: 10.3389/fonc.2022.945189
  34. Daw NC, Chou AJ, Jaffe N, et al. Recurrent osteosarcoma with a single pulmonary metastasis: a multi-institutional review. Br J Cancer. 2015;112(2):278–82. doi: 10.1038/bjc.2014.585
  35. Kempf-Bielack B, Bielack SS, Jürgens H, et al. Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J Clin Oncol. 2005;23(3):559–68. doi: 10.1200/JCO.2005.04.063
  36. Brennan B, Kirton L, Marec-Bérard P, et al. Comparison of two chemotherapy regimens in patients with newly diagnosed Ewing sarcoma (EE2012): an open-label, randomised, phase 3 trial. Lancet. 2022;400(10362):1513–1521. doi: 10.1016/S0140-6736(22)01790-1
  37. Womer RB, West DC, Krailo MD, et al. Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(33):4148–54. doi: 10.1200/JCO.2011.41.5703
  38. Chawla S, Blay JY, Rutkowski P, et al. Denosumab in patients with giant-cell tumour of bone: a multicentre, open-label, phase 2 study. Lancet Oncol. 2019;20(12):1719–1729. doi: 10.1016/S1470-2045(19)30663-1
  39. Tsukamoto S, Mavrogenis AF, Kido A, Errani C. Current Concepts in the Treatment of Giant Cell Tumors of Bone. Cancers (Basel). 2021;13(15):3647. doi: 10.3390/cancers13153647
  40. Morii R, Tsukamoto S, Righi A, et al. Effect of Adjuvant Chemotherapy on Localized Malignant Giant Cell Tumor of Bone: A Systematic Review. Cancers (Basel). 2021;13(21):5410. doi: 10.3390/cancers13215410
  41. Fleuren EDG, Vlenterie M, van der Graaf WTA. Recent advances on anti-angiogenic multi-receptor tyrosine kinase inhibitors in osteosarcoma and Ewing sarcoma. Front Oncol. 2023;13:1013359. doi: 10.3389/fonc.2023.1013359
  42. Long Z, Huang M, Liu K, et al. Assessment of Efficiency and Safety of Apatinib in Advanced Bone and Soft Tissue Sarcomas: A Systematic Review and Meta-Analysis. Front Oncol. 2021;11:662318. doi: 10.3389/fonc.2021.662318
  43. Gaspar N, Campbell-Hewson Q, Gallego Melcon S, et al. Phase I/II study of single-agent lenvatinib in children and adolescents with refractory or relapsed solid malignancies and young adults with osteosarcoma (ITCC-050)☆. ESMO Open. 2021;6(5):100250. doi: 10.1016/j.esmoop.2021.100250
  44. Nakahara Y, Fukui T, Katono K, et al. Pneumothorax during Pazopanib Treatment in Patients with Soft-Tissue Sarcoma: Two Case Reports and a Review of the Literature. Case Rep Oncol. 2017;10(1):333–338. doi: 10.1159/000463380
  45. Groenland SL, van Eerden RAG, Westerdijk K, et al.; Dutch Pharmacology Oncology Group (DPOG). Therapeutic drug monitoring-based precision dosing of oral targeted therapies in oncology: a prospective multicenter study. Ann Oncol. 2022;33(10):1071–1082. doi: 10.1016/j.annonc.2022.06.010
  46. Liu JY, Zhu BR, Wang YD, Sun X. The efficacy and safety of Apatinib mesylate in the treatment of metastatic osteosarcoma patients who progressed after standard therapy and the VEGFR2 gene polymorphism analysis. Int J Clin Oncol. 2020;25(6):1195–1205. doi: 10.1007/s10147-020-01644-7
  47. Tap WD, Villalobos VM, Cote GM, et al. Phase I Study of the Mutant IDH1 Inhibitor Ivosidenib: Safety and Clinical Activity in Patients with Advanced Chondrosarcoma. J Clin Oncol. 2020;38(15):1693–1701. doi: 10.1200/JCO.19.02492
  48. Tian Z, Niu X, Yao W. Receptor Tyrosine Kinases in Osteosarcoma Treatment: Which Is the Key Target? Front Oncol. 2020;10:1642. doi: 10.3389/fonc.2020.01642
  49. Seto T, Song MN, Trieu M, et al. Real-World Experiences with Pazopanib in Patients with Advanced Soft Tissue and Bone Sarcoma in Northern California. Med Sci (Basel). 2019;7(3):48. doi: 10.3390/medsci7030048
  50. Safwat A, Boysen A, Lücke A, Rossen P. Pazopanib in metastatic osteosarcoma: significant clinical response in three consecutive patients. Acta Oncol. 2014;53(10):1451–4. doi: 10.3109/0284186X.2014.948062
  51. Longhi A, Paioli A, Palmerini E, et al. Pazopanib in relapsed osteosarcoma patients: report on 15 cases. Acta Oncol. 2019;58(1):124–128. doi: 10.1080/0284186X.2018.1503714
  52. Aggerholm-Pedersen N, Rossen P, Rose H, Safwat A. Pazopanib in the Treatment of Bone Sarcomas: Clinical Experience. Transl Oncol. 2020;13(2):295–299. doi: 10.1016/j.tranon.2019.12.001
  53. Elete KR, Albritton KH, Akers LJ, Basha R, Ray A. Response to Pazopanib in Patients with Relapsed Osteosarcoma. J Pediatr Hematol Oncol. 2020;42(4):e254–e257. doi: 10.1097/MPH.0000000000001375
  54. Frankel P, Ruel C, Uche A, et al. Pazopanib in Patients with Osteosarcoma Metastatic to the Lung: Phase 2 Study Results and the Lessons for Tumor Measurement. J Oncol. 2022;2022:3691025. doi: 10.1155/2022/3691025
  55. Schulte B, Mohindra N, Milhem M, et al. Phase II study of pazopanib with oral topotecan in patients with metastatic and non-resectable soft tissue and bone sarcomas. Br J Cancer. 2021;125(4):528–533. doi: 10.1038/s41416-021-01448-0
  56. Grignani G, Palmerini E, Dileo P, et al. A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: an Italian Sarcoma Group study. Ann Oncol. 2012;23(2):508–16. doi: 10.1093/annonc/mdr151
  57. Raciborska A, Bilska K. Sorafenib in patients with progressed and refractory bone tumors. Med Oncol. 2018;35(10):126. doi: 10.1007/s12032-018-1180-x
  58. Armstrong AE, Walterhouse DO, Leavey PJ, Reichek J, Walz AL. Prolonged response to sorafenib in a patient with refractory metastatic osteosarcoma and a somatic PDGFRA D846V mutation. Pediatr Blood Cancer. 2019;66(1):e27493. doi: 10.1002/pbc.27493
  59. Grignani G, Palmerini E, Ferraresi V, et al.; Italian Sarcoma Group. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol. 2015;16(1):98–107. doi: 10.1016/S1470-2045(14)71136-2
  60. Fedenko AA, Senzhapova E, Aliev M, Dzampaev A, Bokhyan B. Everolimus/sorafenib combination in the treatment of refractory pediatric osteosarcomas: Single center experience. J Clin Oncol. 2016;34(suppl):e22501.
  61. Federico SM, Caldwell KJ, McCarville MB, et al. Phase I expansion cohort to evaluate the combination of bevacizumab, sorafenib and low-dose cyclophosphamide in children and young adults with refractory or recurrent solid tumours. Eur J Cancer. 2020;132:35–42. doi: 10.1016/j.ejca.2020.03.010
  62. Duffaud F, Mir O, Boudou-Rouquette P, et al.; French Sarcoma Group. Efficacy and safety of regorafenib in adult patients with metastatic osteosarcoma: a non-comparative, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol. 2019;20(1):120–133. doi: 10.1016/S1470-2045(18)30742-3
  63. Davis LE, Bolejack V, Ryan CW, et al. Randomized Double-Blind Phase II Study of Regorafenib in Patients With Metastatic Osteosarcoma. J Clin Oncol. 2019;37(16):1424–1431. doi: 10.1200/JCO.18.02374
  64. Gliksberg A, Fraum A, Aguina MM, Schmidt ML, Kent P. Regorafenib for progressive relapsed mestastatic osteosarcoma in an adolescent. 2020 CTOS Annual Meeting Final Program Abstracts. 2020.
  65. Chuk MK, Widemann BC, Minard CG, et al. A phase 1 study of cabozantinib in children and adolescents with recurrent or refractory solid tumors, including CNS tumors: Trial ADVL1211, a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2018;65(8):e27077. doi: 10.1002/pbc.27077
  66. Italiano A, Mir O, Mathoulin-Pelissier S, et al. Cabozantinib in patients with advanced Ewing sarcoma or osteosarcoma (CABONE): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2020;21(3):446–455. doi: 10.1016/S1470-2045(19)30825-3
  67. Tang L, Niu X, Wang Z, et al. Anlotinib for Recurrent or Metastatic Primary Malignant Bone Tumor: A Multicenter, Single-Arm Trial. Front Oncol. 2022;12:811687. doi: 10.3389/fonc.2022.811687
  68. Yao W, Zhang P, Wang X, et al. Efficacy and safety of anlotinib hydrochloride in the treatment of advanced bone and soft tissue sarcoma after failure of first-line chemotherapy. J Clin Oncol. 2021;39(15_suppl):e23504. doi: 10.1200/JCO.2021.39.15_suppl.e23504
  69. Tian Z, Liu H, Zhang F, et al. Retrospective review of the activity and safety of apatinib and anlotinib in patients with advanced osteosarcoma and soft tissue sarcoma. Invest New Drugs. 2020;38(5):1559–69. doi: 10.1007/s10637-020-00912-7
  70. Gaspar N, Venkatramani R, Hecker-Nolting S, et al. Lenvatinib with etoposide plus ifosfamide in patients with refractory or relapsed osteosarcoma (ITCC-050): a multicentre, open-label, multicohort, phase 1/2 study. Lancet Oncol. 2021;22(9):1312–1321. doi: 10.1016/S1470-2045(21)00387-9
  71. Dembla V, Groisberg R, Hess K, et al. Outcomes of patients with sarcoma enrolled in clinical trials of pazopanib combined with histone deacetylase, mTOR, Her2, or MEK inhibitors. Sci Rep. 2017;7(1):15963. doi: 10.1038/s41598-017-13114-8
  72. Gill J, Gorlick R. Advancing therapy for osteosarcoma. Nat Rev Clin Oncol. 2021;18(10):609–624. doi: 10.1038/s41571-021-00519-8
  73. Flores G, Grohar PJ. One oncogene, several vulnerabilities: EWS/FLI targeted therapies for Ewing sarcoma. J Bone Oncol. 2021;31:100404. doi: 10.1016/j.jbo.2021.100404
  74. Grohar PJ, Glod J, Peer CJ, et al. A phase I/II trial and pharmacokinetic study of mithramycin in children and adults with refractory Ewing sarcoma and EWS-FLI1 fusion transcript. Cancer Chemother Pharmacol. 2017;80(3):645–652. doi: 10.1007/s00280-017-3382-x
  75. Subbiah V, Braña I, Longhi A, et al. Antitumor Activity of Lurbinectedin, a Selective Inhibitor of Oncogene Transcription, in Patients with Relapsed Ewing Sarcoma: Results of a Basket Phase II Study. Clin Cancer Res. 2022;28(13):2762–2770. doi: 10.1158/1078-0432.CCR-22-0696
  76. Casey DL, Lin TY, Cheung NV. Exploiting Signaling Pathways and Immune Targets Beyond the Standard of Care for Ewing Sarcoma. Front Oncol. 2019;9:537. doi: 10.3389/fonc.2019.00537
  77. Wagner LM, Fouladi M, Ahmed A, et al. Phase II study of cixutumumab in combination with temsirolimus in pediatric patients and young adults with recurrent or refractory sarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2015;62(3):440–4. doi: 10.1002/pbc.25334
  78. Tamura A, Yamamoto N, Nino N, et al. Pazopanib maintenance therapy after tandem high-dose chemotherapy for disseminated Ewing sarcoma. Int Cancer Conf J. 2019;8(3):95–100. doi: 10.1007/s13691-019-00362-w
  79. Alcindor T. Response of refractory Ewing sarcoma to pazopanib. Acta Oncol. 2015;54(7):1063–4. doi: 10.3109/0284186X.2014.971938
  80. Attia S, Bolejack V, Ganjoo KN, et al. A phase II trial of regorafenib in patients with advanced Ewing sarcoma and related tumors of soft tissue and bone: SARC024 trial results. Cancer Med. 2023;12(2):1532–1539. doi: 10.1002/cam4.5044
  81. Duffaud F, Blay JY, Mir O, et al. LBA68 results of the randomized, placebo (PL)-controlled phase II study evaluating the efficacy and safety of regorafenib (REG) in patients (pts) with metastatic relapsed Ewing sarcoma (ES), on behalf of the French sarcoma group (FSG) and UNICANCER. Ann Oncol. 2020;31 Suppl 4:S1199. doi: 10.1016/j.annonc.2020.08.2309
  82. Xu J, Xie L, Sun X, et al. Anlotinib, Vincristine, and Irinotecan for Advanced Ewing Sarcoma After Failure of Standard Multimodal Therapy: A Two-Cohort, Phase Ib/II Trial. Oncologist. 2021;26(7):e1256-e1262. doi: 10.1002/onco.13726
  83. Bernstein-Molho R, Kollender Y, Issakov J, et al. Clinical activity of mTOR inhibition in combination with cyclophosphamide in the treatment of recurrent unresectable chondrosarcomas. Cancer Chemother Pharmacol. 2012;70(6):855–60. doi: 10.1007/s00280-012-1968-x
  84. Alemany R, Moura DS, Redondo A, et al. Nilotinib as Coadjuvant Treatment with Doxorubicin in Patients with Sarcomas: A Phase I Trial of the Spanish Group for Research on Sarcoma. Clin Cancer Res. 2018;24(21):5239–5249. doi: 10.1158/1078-0432.CCR-18-0851
  85. Chow W, Frankel P, Ruel C, et al. Results of a prospective phase 2 study of pazopanib in patients with surgically unresectable or metastatic chondrosarcoma. Cancer. 2020;126(1):105–111. doi: 10.1002/cncr.32515
  86. Duffaud F, Italiano A, Bompas E, et al.; French Sarcoma Group. Efficacy and safety of regorafenib in patients with metastatic or locally advanced chondrosarcoma: Results of a non-comparative, randomised, double-blind, placebo controlled, multicentre phase II study. Eur J Cancer. 2021;150:108–118. doi: 10.1016/j.ejca.2021.03.039
  87. Jones RL, Katz D, Loggers ET, et al. Clinical benefit of antiangiogenic therapy in advanced and metastatic chondrosarcoma. Med Oncol. 2017;34(10):167. doi: 10.1007/s12032-017-1030-2
  88. Tsavaris O, Economopoulou P, Kotsantis I, et al. Clinical Benefit of Pazopanib in a Patient with Metastatic Chondrosarcoma: A Case Report and Review of the Literature. Front Oncol. 2018;8:45. doi: 10.3389/fonc.2018.00045
  89. Schuetze SM, Bolejack V, Choy E, et al. Phase 2 study of dasatinib in patients with alveolar soft part sarcoma, chondrosarcoma, chordoma, epithelioid sarcoma, or solitary fibrous tumor. Cancer. 2017;123(1):90–97. doi: 10.1002/cncr.30379
  90. Grignani G, Palmerini E, Stacchiotti S, et al. A phase 2 trial of imatinib mesylate in patients with recurrent nonresectable chondrosarcomas expressing platelet-derived growth factor receptor-α or -β: An Italian Sarcoma Group study. Cancer. 2011;117(4):826–31. doi: 10.1002/cncr.25632
  91. Polychronidou G, Karavasilis V, Pollack SM, et al. Novel therapeutic approaches in chondrosarcoma. Future Oncol. 2017;13(7):637–648. doi: 10.2217/fon-2016-0226
  92. Miwa S, Yamamoto N, Hayashi K, et al. Therapeutic Targets and Emerging Treatments in Advanced Chondrosarcoma. Int J Mol Sci. 2022;23(3):1096. doi: 10.3390/ijms23031096
  93. Meng T, Jin J, Jiang C, et al. Molecular Targeted Therapy in the Treatment of Chordoma: A Systematic Review. Front Oncol. 2019;9:30. doi: 10.3389/fonc.2019.00030
  94. Hindi N, Casali PG, Morosi C, et al. Imatinib in advanced chordoma: A retrospective case series analysis. Eur J Cancer. 2015;51(17):2609–14. doi: 10.1016/j.ejca.2015.07.038
  95. Stacchiotti S, Longhi A, Ferraresi V, et al. Phase II study of imatinib in advanced chordoma. J Clin Oncol. 2012;30(9):914–20. doi: 10.1200/JCO.2011.35.3656
  96. George S, Merriam P, Maki RG, et al. Multicenter phase II trial of sunitinib in the treatment of nongastrointestinal stromal tumor sarcomas. J Clin Oncol. 2009;27(19):3154–60. doi: 10.1200/JCO.2008.20.9890
  97. Branstetter DG, Nelson SD, Manivel JC, et al. Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone. Clin Cancer Res. 2012;18(16):4415–24. doi: 10.1158/1078-0432.CCR-12-0578
  98. Palmerini E, Chawla NS, Ferrari S, et al. Denosumab in advanced/unresectable giant-cell tumour of bone (GCTB): For how long? Eur J Cancer. 2017;76:118–124. doi: 10.1016/j.ejca.2017.01.028
  99. Sambri A, Medellin MR, Errani C, et al. Denosumab in giant cell tumour of bone in the pelvis and sacrum: Long-term therapy or bone resection? J Orthop Sci. 2020;25(3):513–519. doi: 10.1016/j.jos.2019.05.003
  100. Gaston CL, Grimer RJ, Parry M, et al. Current status and unanswered questions on the use of Denosumab in giant cell tumor of bone. Clin Sarcoma Res. 2016;6(1):15. doi: 10.1186/s13569-016-0056-0
  101. Rutkowski P, Ferrari S, Grimer RJ, et al. Surgical downstaging in an open-label phase II trial of denosumab in patients with giant cell tumor of bone. Ann Surg Oncol. 2015;22(9):2860–8. doi: 10.1245/s10434-015-4634-9
  102. Venneker S, van Eenige R, Kruisselbrink AB, et al. Histone Deacetylase Inhibitors as a Therapeutic Strategy to Eliminate Neoplastic “Stromal” Cells from Giant Cell Tumors of Bone. Cancers (Basel). 2022;14(19):4708. doi: 10.3390/cancers14194708

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Current survival rates in high-grade bone sarcomas. ОВ — overall survival.

下载 (87KB)

版权所有 © Eco-Vector, 2024



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».