Iteratively regularized methods for irregular nonlinear operator equations with a normally solvable derivative at the solution


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A group of iteratively regularized methods of Gauss–Newton type for solving irregular nonlinear equations with smooth operators in a Hilbert space under the condition of normal solvability of the derivative of the operator at the solution is considered. A priori and a posteriori methods for termination of iterations are studied, and estimates of the accuracy of approximations obtained are found. It is shown that, in the case of a priori termination, the accuracy of the approximation is proportional to the error in the input data. Under certain additional conditions, the same estimate is established for a posterior termination from the residual principle. These results generalize known similar estimates for linear equations with a normally solvable operator.

Авторлар туралы

M. Kokurin

Mari State University

Хат алмасуға жауапты Автор.
Email: kokurinm@yandex.ru
Ресей, pl. Lenina 1, Yoshkar-Ola, 424001

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016