Inverse final observation problems for Maxwell’s equations in the quasi-stationary magnetic approximation and stable sequential Lagrange principles for their solving


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

An initial–boundary value problem for Maxwell’s equations in the quasi-stationary magnetic approximation is investigated. Special gauge conditions are presented that make it possible to state the problem of independently determining the vector magnetic potential. The well-posedness of the problem is proved under general conditions on the coefficients. For quasi-stationary Maxwell equations, final observation problems formulated in terms of the vector magnetic potential are considered. They are treated as convex programming problems in a Hilbert space with an operator equality constraint. Stable sequential Lagrange principles are stated in the form of theorems on the existence of a minimizing approximate solution of the optimization problems under consideration. The possibility of applying algorithms of dual regularization and iterative dual regularization with a stopping rule is justified in the case of a finite observation error.

Авторлар туралы

A. Kalinin

Nizhny Novgorod State University

Хат алмасуға жауапты Автор.
Email: avk@mm.unn.ru
Ресей, Nizhny Novgorod, 603950

M. Sumin

Nizhny Novgorod State University

Email: avk@mm.unn.ru
Ресей, Nizhny Novgorod, 603950

A. Tyukhtina

Nizhny Novgorod State University

Email: avk@mm.unn.ru
Ресей, Nizhny Novgorod, 603950

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017