Locally One-Dimensional Difference Schemes for Parabolic Equations in Media Possessing Memory


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Many processes in complex systems are nonlocal and possess long-term memory. Such problems are encountered in the theory of wave propagation in relaxing media [1, p. 86], whose equation of state is distinguished by a noninstantaneous dependence of the pressure p(t) on the density ρ(t); the value of p at a time t is determined by the value of the density ρ at all preceding times; i.e., the medium has memory. Similar problems are also encountered in mechanics of polymers and in the theory of moisture transfer in soil [2]; the same equation arises in the theory of solitary waves [3] and is also called the linearized alternative Korteweg–de Vries equation, or the linearized Benjamin–Bona–Mahony equation. One of such problems was studied in [4]. In the present paper, a locally one-dimensional scheme for parabolic equations with a nonlocal source, where the solution depends on the time t at all preceding times, is considered.

Авторлар туралы

Z. Beshtokova

Institute of Applied Mathematics and Autmation, Kabardino-Balkar Scientific Center, Russia Academy of Sciences

Хат алмасуға жауапты Автор.
Email: zarabaeva@yandex.ru
Ресей, Nalchik

M. Lafisheva

Kabardino-Balkarian State University

Email: zarabaeva@yandex.ru
Ресей, Nalchik

M. Shkhanukov-Lafishev

Institute of Applied Mathematics and Autmation, Kabardino-Balkar Scientific Center, Russia Academy of Sciences

Email: zarabaeva@yandex.ru
Ресей, Nalchik

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018