On the existence of mosaic-skeleton approximations for discrete analogues of integral operators


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Exterior three-dimensional Dirichlet problems for the Laplace and Helmholtz equations are considered. By applying methods of potential theory, they are reduced to equivalent Fredholm boundary integral equations of the first kind, for which discrete analogues, i.e., systems of linear algebraic equations (SLAEs) are constructed. The existence of mosaic-skeleton approximations for the matrices of the indicated systems is proved. These approximations make it possible to reduce the computational complexity of an iterative solution of the SLAEs. Numerical experiments estimating the capabilities of the proposed approach are described.

Sobre autores

A. Kashirin

Computing Center, Far East Branch

Autor responsável pela correspondência
Email: elomer@mail.ru
Rússia, Khabarovsk, 680000

M. Taltykina

Computing Center, Far East Branch

Email: elomer@mail.ru
Rússia, Khabarovsk, 680000

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017