Convergence Analysis of the Finite Difference ADI Scheme for Variable Coefficient Parabolic Problems with Nonzero Dirichlet Boundary Conditions


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Since the invention by Peaceman and Rachford, more than 60 years ago, of the well celebrated ADI finite difference scheme for parabolic initial-boundary problems on rectangular regions, many papers have been concerned with prescribing the boundary values for the intermediate approximations at half time levels in the case of nonzero Dirichlet boundary conditions. In the present paper, for variable coefficient parabolic problems and time-stepsize sufficiently small, we prove second order accuracy in the discrete \({{L}^{2}}\) norm of the ADI finite difference scheme in which the intermediate approximations do not involve the so called “perturbation term”. As a byproduct of our stability analysis we also show that, for variable coefficients and time-stepsize sufficiently small, the ADI scheme with the perturbation term converges with order two in the discrete \({{H}^{1}}\) norm. Our convergence results generalize previous results obtained for the heat equation.

Sobre autores

B. Bialecki

Department of Applied Mathematics and Statistics, Colorado School of Mines

Autor responsável pela correspondência
Email: bbialeck@mines.edu
Estados Unidos da América, Golden, Colorado, 80401

M. Dryja

Department of Informatics, Vistula University

Autor responsável pela correspondência
Email: m.dryja@vistula.edu.pl
Polônia, Warsaw, 02-787

R. Fernandes

Department of Applied Mathematics and Sciences, Petroleum Institute, Khalifa University of Science and Technology

Autor responsável pela correspondência
Email: rfernandes@pi.ac.ae
Emirados Árabes Unidos, Abu Dhabi, 00000

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018