Numerical simulation of convective motion in an anisotropic porous medium and cosymmetry conservation
- Авторы: Abdelhafez M.A.1,2, Tsybulin V.G.1
-
Учреждения:
- Southern Federal University
- Sohag University
- Выпуск: Том 57, № 10 (2017)
- Страницы: 1706-1719
- Раздел: Article
- URL: https://journal-vniispk.ru/0965-5425/article/view/179472
- DOI: https://doi.org/10.1134/S0965542517100025
- ID: 179472
Цитировать
Аннотация
The onset of convection in a porous anisotropic rectangle occupied by a heat-conducting fluid heated from below is analyzed on the basis of the Darcy–Boussinesq model. It is shown that there are combinations of control parameters for which the system has a nontrivial cosymmetry and a one-parameter family of stationary convective regimes branches off from the mechanical equilibrium. For the two-dimensional convection equations in a porous medium, finite-difference approximations preserving the cosymmetry of the original system are developed. Numerical results are presented that demonstrate the formation of a family of convective regimes and its disappearance when the approximations do not inherit the cosymmetry property.
Ключевые слова
Об авторах
M. Abdelhafez
Southern Federal University; Sohag University
Автор, ответственный за переписку.
Email: mostafa.abdallah@yahoo.com
Россия, Rostov-on-Don, 344090; Sohag, 82524
V. Tsybulin
Southern Federal University
Email: mostafa.abdallah@yahoo.com
Россия, Rostov-on-Don, 344090
Дополнительные файлы
