Approximation of a Function and Its Derivatives on the Basis of Cubic Spline Interpolation in the Presence of a Boundary Layer
- Авторы: Blatov I.A.1, Zadorin A.I.2, Kitaeva E.V.3
-
Учреждения:
- Povolzhskiy State University of Telecommunications and Informatics
- Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences
- Samara University
- Выпуск: Том 59, № 3 (2019)
- Страницы: 343-354
- Раздел: Article
- URL: https://journal-vniispk.ru/0965-5425/article/view/180444
- DOI: https://doi.org/10.1134/S0965542519030047
- ID: 180444
Цитировать
Аннотация
The problem of approximate calculation of the derivatives of functions with large gradients in the region of an exponential boundary layer is considered. It is known that the application of classical formulas of numerical differentiation to functions with large gradients in a boundary layer leads to significant errors. It is proposed to interpolate such functions by cubic splines on a Shishkin grid condensed in the boundary layer. The derivatives of a function defined on the grid nodes are found by differentiating the cubic spline. Using this approach, estimates of the relative error in the boundary layer and the absolute error outside of the boundary layer are obtained. These estimates are uniform in a small parameter. The results of computational experiments are discussed.
Об авторах
I. Blatov
Povolzhskiy State University of Telecommunications and Informatics
Автор, ответственный за переписку.
Email: blatow@mail.ru
Россия, Samara, 443010
A. Zadorin
Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences
Автор, ответственный за переписку.
Email: zadorin@ofim.oscsbras.ru
Россия, Novosibirsk, 630090
E. Kitaeva
Samara University
Email: zadorin@ofim.oscsbras.ru
Россия, Samara, 443086
Дополнительные файлы
