Estimation of the Distance between True and Numerical Solutions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Given an ensemble of numerical solutions generated by different algorithms that are guaranteed to have different errors, the triangle inequality is used to find a neighborhood of a numerical solution that contains the true one. By analyzing the distances between the numerical solutions, the latter can be ranged according to their error magnitudes. Numerical tests for the two-dimensional compressible Euler equations demonstrate the possibility of comparing the errors of different methods and determining a domain containing the true solution.

作者简介

A. Alekseev

Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: alekseev.ak@phystech.edu
俄罗斯联邦, Dolgoprudnyi, Moscow oblast, 141700

A. Bondarev

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: bond@keldysh.ru
俄罗斯联邦, Moscow, 125047

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019