Estimation of the Distance between True and Numerical Solutions
- 作者: Alekseev A.K.1, Bondarev A.E.2
-
隶属关系:
- Moscow Institute of Physics and Technology
- Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
- 期: 卷 59, 编号 6 (2019)
- 页面: 857-863
- 栏目: Article
- URL: https://journal-vniispk.ru/0965-5425/article/view/180608
- DOI: https://doi.org/10.1134/S0965542519060034
- ID: 180608
如何引用文章
详细
Given an ensemble of numerical solutions generated by different algorithms that are guaranteed to have different errors, the triangle inequality is used to find a neighborhood of a numerical solution that contains the true one. By analyzing the distances between the numerical solutions, the latter can be ranged according to their error magnitudes. Numerical tests for the two-dimensional compressible Euler equations demonstrate the possibility of comparing the errors of different methods and determining a domain containing the true solution.
作者简介
A. Alekseev
Moscow Institute of Physics and Technology
编辑信件的主要联系方式.
Email: alekseev.ak@phystech.edu
俄罗斯联邦, Dolgoprudnyi, Moscow oblast, 141700
A. Bondarev
Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: bond@keldysh.ru
俄罗斯联邦, Moscow, 125047
补充文件
