Study of zinc implanted silicon nitride film

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The results of a study of nanoclusters at the interface of a Si3N4 film on a Si substrate implanted with 64Zn+ ions with a dose of 5×1016/cm2 and energy of 40 keV are presented. The Si3N4 film was deposited on a silicon substrate using the gas-phase method. Then the implanted samples were annealed in air in steps of 100°C for 1 hour at each step in the temperature range of 400–700°C. The surface morphology of the samples was studied using scanning probe microscopy. The profiles of the implanted impurity and film elements, as well as the chemical state of the Zn ion, were studied using X-ray photoelectron and Auger electron spectroscopy. The shock pulse method revealed that after implantation, individual metallic zinc nanoclusters with a size of about 100 nm or less were detected near the surface of the Si3N4 film. During the annealing process, they grow with simultaneous transformation into the ZnSiN2 phase and, possibly, into the phases of zinc oxide and silicide near the surface. After annealing at a temperature of 700°C, Zn-containing nanoclusters with a size of about 100 nm are formed in the Si3N4 film.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Privezentsev

Scientific Research Institute for System Analysis of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: v.privezentsev@mail.ru
Ресей, Moscow

А. Firsov

Scientific Research Institute for System Analysis of the Russian Academy of Sciences

Email: v.privezentsev@mail.ru
Ресей, Moscow

V. Kulikauskas

Lomonosov Moscow State University

Email: v.privezentsev@mail.ru

Skobeltsyn Institute of Nuclear Physics

Ресей, Moscow

D. Kiselev

National University of Science and Technology “MISiS”

Email: v.privezentsev@mail.ru
Ресей, Moscow

B. Senatulin

National University of Science and Technology “MISiS”

Email: v.privezentsev@mail.ru
Ресей, Moscow

Әдебиет тізімі

  1. Litton C.W., Collins T.C., Reynolds D.S. Zinc Oxide Materials for Electronic and Optoelectronic Device Application, Wiley, Chichester, 2011.
  2. Zain J.H., Ramkumar J., Sankaran C., Tyagi A.K. // Separation Science Technology. 2019. V. 55. Iss. 11. P. 1. https://www.doi.org/10.1080/01496395.2019.1617746
  3. Straumal B.B., Mazilkin A.A., Protasova S.G., Myatiev A.A., Straumal P.B., Schütz G., van Aken P.A., Goering E., Baretzky B. // Phys. Rev. B. 2009. V. 79. P. 205206. https://www.doi.org/10.1103/PhysRevB.79.205206
  4. Liu Y.X., Liu Y.C., Shen D.Z., Zhong G.Z., Fan X.W., Kong X.G., Mu R., Henderson D.O. // J. Cryst. Growth. 2002. V. 240. P. 152.
  5. Urfa Y., Çorumlu V., Altındal A. // Mater. Chem. Phys. 2021. V. 264. P. 124473. https://doi.org/10.1016/j.matchemphys.2021.124473
  6. Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., Bakhori S.K.M., Habsah H., Dasmawati M. // Nano-Micro Lett. 2015. V. 7. P. 219. https://www.doi.org/10.1007/s40820-015-0040-x
  7. Inbasekaran S., Senthil R., Ramamurthy G., Sastry T.P. // Intern. J. Innov. Res. Sci. Engineer. Technol. 2014. V. 3. Iss. 1. P. 8601.
  8. Smestad G.P, Gratzel M. // J. Chem. Educ. 1998. V. 75. P. 752.
  9. Amekura H., Takeda Y., Kishimoto N. // Nucl. Instrum. Methods Phys. Res. B. 2004. V. 222. P. 96. https://doi.org/10.1016/j.nimb.2004.01.003
  10. Yang J., Liu X., Yang L., Wang Y., Zhang Y., Lang J., Gao M., Wei M. // J. Alloys Compd. 2009. V. 485. P. 743. https://doi.org/10.1016/j.jallcom.2009.06.070
  11. Shen Y., Li Z., Zhang X., Zhang D., He W., Xue Y., Gao Y., Zhang X., Wang Z., Liu C.L. // Optical. Mater. 2010. V. 32. Iss. 9. P. 961. https://www.doi.org/10.1016/j.optmat.2010.01.033
  12. Zatsepin D., Zatsepni A., Boukhvalov D.W., Kurmaev E.Z., Pchelkina Z.V., Gavrilov N.V. // J. Non-Cryst. Solids. B. 2016. V. 432. P. 183. https://www.doi.org/10.1016/j.jnoncrysol.2015.10.002
  13. Tereshchenko A.N., Privezentsev V.V., Firsov A.A., Kulikauskas V.S., Zatekin V.V., Voronova M.I. // J. Surf. Investig.: X-ray, Synchr. Neutr. Tech. 2023. V. 17. P. 1232. https://www.doi.org/10.1134/S1027451023060198
  14. Gwyddion Programm. (2021) Czech Metrology Institute. http://gwyddion.net
  15. National Institute of Standards and Technology. (2000) Gaithersburg, USA. https://www.nist.gov
  16. Moulder J.F. Handbook of X-ray photoelectron spectroscopy. Physical Electronics, 1995. 230 p.
  17. Монахова Ю.Б., Муштакова С.П. // Журнал аналит. химии. 2012. Т. 67. № 12. С. 1044.
  18. Пирс К., Адамс А., Кац Л., Цай Дж., Сейдел Т., Макгиллис Д. Технология СБИС, в 2-х книгах. / Ред. Зи С.М. Пер. с англ. М.: Мир, 1986.
  19. Futsuhara M., Yoshioka K., Takai O. // Thin Solid Films. 1998. V. 322. P. 274.
  20. Coelho-Jún H., Silva B.G., Labre C., Loreto R.P., Sommer R.L. // Sci. Rep. 2021. V. 11. P. 3248.
  21. Анализ поверхности методами Оже- и рентгеновской фотоэлектронной спектроскопии/ / Ред. Бриггс Д., Сих М.П. Пер. с англ. М.: Мир, 1987. 181. с.
  22. MultiPak software. https://multipak.software.com
  23. Thermo Fisher Scientific. (2024) Thermo Fisher Scientific Inc., USA. https://www.thermofisher.com/
  24. Barr T.L., Seal S. // J. Vacuum Sci. Technol. A. 1995. V. 13. Iss. 3. P. 1239. https://doi.org/10.1116/1.579868

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Images of Si3N4/Si film after implantation: a – topography; b – surface potential signal.

Жүктеу (45KB)
3. Fig. 2. Images of Si3N4/Si film after annealing at 700°C: a – topography; b – surface potential signal.

Жүктеу (54KB)
4. Fig. 3. Histograms of particle distribution in the plane by size: a – after implantation; b – after annealing at 700°C.

Жүктеу (34KB)
5. Fig. 4. Histograms of surface potential distribution: 1 — after implantation; 2 — after annealing at 700°C.

Жүктеу (13KB)
6. Fig. 5. Concentration profiles of elements after implantation: 1 — O; 2 — N; 3 — Si; 4 — Zn.

Жүктеу (12KB)
7. Fig. 6. Profiles of element concentrations after annealing at 700°C: 1 — O; 2 — N; 3 — Si; 4 — Zn.

Жүктеу (13KB)
8. Fig. 7. XPS (a) and Auger spectra (b) of the Zn2p3/2 state and the L3M45M45 transition of the sample after implantation, obtained from the region at a depth of 0 (1); 5.3 (2); 23.9 (3); 45.1 (4); 55.7 (5).

Жүктеу (33KB)
9. Fig. 8. XPS (a) and Auger spectra (b) of the Zn2p3/2 state and the L3M45M45 transition of the sample after annealing at 700°C, obtained from the region at a depth of 0 (1); 2.7 (2); 13.3 (3); 29.2 (4); 50.4 (5).

Жүктеу (33KB)

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».