Структура и магнитные свойства многослойных наносистем на основе тонких пленок кобальта и металлов группы хрома, нанесенных магнетронным способом

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В пленочных наноструктурах на основе кобальта и буферных слоев металлов группы хрома, сформированных методом магнетронного распыления, обнаружены особенности проводимости буферных слоев различной толщины и магнитооптического отклика пленок кобальта на вольфраме. Анализ данных электронной микроскопии, рентгенофазового анализа, магнитооптических измерений свидетельствует о специфике строения и свойств пленок вольфрама, сопротивление которых зависит от их толщин и определяется переносом заряда между кристаллитами. В наноструктурах на основе слоев вольфрам/кобальт отсутствует магнитная анизотропия.

Об авторах

А. В. Проказников

Национальный исследовательский центр “Курчатовский институт”

Автор, ответственный за переписку.
Email: prokaznikov@mail.ru

Ярославский филиал Физико-технологического института им. К.А. Валиева РАН

Россия, Ярославль

В. А. Папорков

Ярославский государственный университет им. П.Г. Демидова

Email: pva@uniyar.ac.ru
Россия, Ярославль

Р. В. Селюков

Национальный исследовательский центр “Курчатовский институт”

Email: prokaznikov@mail.ru

Ярославский филиал Физико-технологического института им. К.А. Валиева РАН

Россия, Ярославль

С. В. Васильев

Национальный исследовательский центр “Курчатовский институт”

Email: prokaznikov@mail.ru

Ярославский филиал Физико-технологического института им. К.А. Валиева РАН

Россия, Ярославль

О. В. Савенко

Ярославский государственный университет им. П.Г. Демидова

Email: prokaznikov@mail.ru
Россия, Ярославль

Список литературы

  1. Merlo A., Leonard G. // Materials. 2021. V. 14. № 14. P. 3823. https://doi.org/10.3390/ma14143823
  2. Селюков Р.В., Изюмов М.О., Наумов В.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 8. С. 26. https://doi.org/10.31857/S1028096020080142
  3. Селюков Р.В., Наумов В.В., Изюмов М.О., Васильев С.В., Мазалецкий Л.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 2. С. 9. https://doi.org/10.31857/S1028096023020097
  4. Аверкиев И.К., Колотов А.А., Бакиева О.Р. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 3. С. 46. https://doi.org/10.31857/S1028096023030020
  5. Vüllers F.T.N., Spolenak R. // Thin Solid Films. 2015. V. 577. P. 26. https://doi.org/10.1016/j.tsf.2015.01.030
  6. Wang S.X., Taratorin A.M. Magnetic Information Storage Technology. London: Academic Press, 1999.
  7. Rotenberg E., Freelon B.K., Koh H., Bostwick A., Rossnagel K., Schmid A., Kevan S.D. // New J. Phys. 2005. V. 7. № 1. P. 114. https://doi.org/10.1088/1367-2630/7/1/114
  8. Abdelhameed A.H., Angloher G., Bauer P., Bento A., Bertoldo E.,·Canonica L., Fuchs D., Hauff D., et al. // J. Low Temp. Phys. 2020. V. 199. P. 407. https://doi.org/10.1007/s10909-020-02357-x
  9. Blundell S. Magnetism in Condensed Matter. Oxford, NY: Oxford University Press Inc, 2001.
  10. Mattheiss L.F. // Phys. Rev. 1965. V. 139. № 6A. P. A1893. https://doi.org/10.1103/PhysRev.139.A1893
  11. Булаевский Л.Н. // УФН. 1976. Т. 120. № 2. С. 259. https://doi.org/10.3367/UFNr.0120.197610c.0259
  12. Bouziane K., Mamor M., Meyer F. // Appl. Phys. A. 2005. V. 81. № 1. P. 209. https://doi.org/10.1007/s00339-004-2558-5
  13. Enss C. Cryogenic Particle Detection. Berlin–Heidelberg–NY: Springer, 2005.
  14. Buchin E.Yu., Vaganova E.I., Naumov V.V., Paporkov V.A., Prokaznikov A.V. // Tech. Phys. Lett. 2009. V. 35. № 7. P. 589. https://doi.org/10.1134/S1063785009070025
  15. Nagakubo A., Lee H.T., Ogi H., Moruyama T., Ono T. // Appl. Phys. Lett. 2020. V. 116. P. 021901. https://doi.org/10.1063/1.5131768
  16. Poulopoulos P., Grammatikopoulos S., Trachylis D., Bissas G., Dragatsikas I., Velgakis M.J., Politis C. // J. Surf. Interfaces Mater. 2015. V. 3. № 1. P. 52. https://doi.org/10.1166/jsim.2015.1077
  17. Miller A.M., Lemon M., Choffel M.A., Rich S.R., Harvel F., Johnson D.C. // Z. Naturforsch. B. 2022. V. 77. № 4–5. P. 313. https://doi.org/10.1515/znb-2022-0020
  18. Basaviah S., Pollak S. R. // J. Appl. Phys. 1968. V. 39. № 12. P. 5548. https://doi.org/10.1063/1.1656012
  19. Morcom W.R., Worrell W.L., Sell H. G., Kaplan H. I. // Metall. Trans. 1974. V. 5. P. 155. https://doi.org/10.1007/BF02642939
  20. Frank F.C., Kasper J.S. // Acta Crystallogr. 1959. V. 12. P. 483. https://doi.org/10.1107/S0365110X59001499
  21. Lassner E., Schubert W.-D. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. New York: Kluwer Academic/Plenum Publishers, 1999.
  22. Li W., Fenton J.C., Wang Y., McComb D. W., Warburton P.A. // J. Appl. Phys. 2008. V. 104. № 9. P. 093913. https://doi.org/10.1063/1.3013444
  23. Nix W.D., Clemens B.M. // J. Mater. Res. 1999. V. 14. № 8. P. 4367. https://doi.org/10.1557/JMR.1999.0468
  24. Гантмахер В.Ф., Левинсон И.Б. Рассеяние носителей тока в металлах и полупроводниках. М.: Наука, 1984. 350 с.
  25. Selyukov R.V., Amirov I.I., Naumov V.V. // Russ. Microelectronics. 2022. V. 51. № 6. P. 488. https://doi.org/10.1134/S1063739722700081
  26. Lita E., Rosenberg D., Nam S., Miller A.J., Balzar D., Kaatz L. M., Schwall R. E. // IEEE Trans. Appl. Supercond. 2005. V. 15. № 2. P. 3528. https://doi.org/10.1109/TASC.2005.849033
  27. Fuchs K. // Math. Proc. Cambridge Phil. Soc. 1938. V. 34. № 1. P. 100. https://doi.org/10.1017/S0305004100019952
  28. Абрикосов А.А. Основы теории металлов. М.: Наука, 1987. 520 с.
  29. Boiko V.V., Gantmacher V.F., Gasparov V.A. // Sov. Phys. JETP. 1974. V. 38. № 3. P. 604.
  30. Desai P.D., Chu T.K., James H.M., Ho C.Y. // J. Phys. Chem. Ref. Data. 1984. V. 13. № 4. P. 1094. https://doi.org/10.1063/1.555723
  31. Lee J.-S., Cho J., You C.-Y. // J. Vac. Sci. Technol. A. 2016. V. 34. № 2. P. 021502. https://doi.org/10.1116/1.4936261
  32. Mayadas A.F., Shatzkes M. // Phys. Rev. 1970. V. 1. № 4. P. 1382. https://doi.org/10.1103/PhysRevB.1.1382

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».