МАКСИМАЛЬНО ДОСТИЖИМАЯ ДИФРАКЦИОННАЯ ЭФФЕКТИВНОСТЬ НЕЙТРОННЫХ НИЗКОЧАСТОТНЫХ РЕШЕТОК С РАЗЛИЧНЫМ ПРОФИЛЕМ ШТРИХОВ
- Авторы: Горай Л.И1,2,3,4, Костромин Н.А1,2
-
Учреждения:
- Санкт-Петербургский электротехнический университет "ЛЭТИ"
- Академический университет им. Ж.И. Алферова РАН
- Институт аналитического приборостроения РАН
- Московский физико-технический институт
- Выпуск: № 5 (2025)
- Страницы: 22-28
- Раздел: Статьи
- URL: https://journal-vniispk.ru/1028-0960/article/view/356808
- DOI: https://doi.org/10.7868/S3034573125050035
- ID: 356808
Цитировать
Аннотация
Строгие расчеты абсолютной дифракционной эффективности η, выполненные ранее с помощью двух коммерческих компьютерных программ на основе электромагнитных методов, показали, что максимальные значения η нейтронных решеток с синусоидальным и ламельным профилями штрихов могут превышать известные аналитические пределы. Так, для синусоидальной решетки с периодом d = 50 мкм, глубиной штриха h = 53.4 нм при угле падения θ = 89.72° (θс = 89.53°) была получена η(−1) = 46.8% на длине волны λ = 1 нм, что на 38.5% больше, чем максимальная скалярная эффективность. Для аналогичной ламельной решетки была получена η(−1) = 46.05%, что на 13.7% выше скалярной. В работе для меди — одного из перспективных материалов оптики холодных нейтронов — исследована не только решетка с синусоидальным и ламельным профилями штрихов, но и рассмотрены наиболее эффективные решетки с треугольным профилем (“с блеском”). Для решетки с d = 50 мкм и h = 41.1 нм получена η(−1) = 79.2% для θ = 89.37° и λ = 1 нм. Данные, вычисленные в обеих программах с точностью ~0.1% для основных порядков дифракции решеток всех профилей штрихов, хорошо сходятся и соответствуют оценкам, полученным с помощью феноменологического подхода.
Об авторах
Л. И Горай
Санкт-Петербургский электротехнический университет "ЛЭТИ"; Академический университет им. Ж.И. Алферова РАН; Институт аналитического приборостроения РАН; Московский физико-технический институт
Автор, ответственный за переписку.
Email: lig@pegrate.com
Санкт-Петербург, Россия; Санкт-Петербург, Россия; Санкт-Петербург, Россия; Долгопрудный, Россия
Н. А Костромин
Санкт-Петербургский электротехнический университет "ЛЭТИ"; Академический университет им. Ж.И. Алферова РАН
Email: lig@pegrate.com
Санкт-Петербург, Россия; Санкт-Петербург, Россия
Список литературы
- Utsuro M., Ignatovich V.K. Handbook of Neutron Optics. Verlag: Wiley-VCH, 2010. 610 p. https://www.google.ru/books/edition/__/q7Hf0AEACAAJ?hl=nu&sa=X&ved=2ahUKEwic09lA6vqJAXUkFikFHWLkMmgQ8fIDegQIExAD
- Scattering Length Density Calculator. http://www.refcalc.appspot.com/sld Accessed on November 24, 2024.
- Spiller E. Soft X-Ray Optics. Bellingham–Washington: SPIE Opt. Eng. Press, 1994. 278 p. https://books.google.ru/books?hl=ru<=&id=khnchMG2KdwC&oi=fnd&pg=PR9&ots=ZD97X1kbjs&sig=f6VAlnLcnFAUGHSZH716H93R8w&redit_esc=yiv-onepage&q&f=false
- Bushuev V.A., Frank A.I., Kulin G.V. // J. Exp. Theor. Phys. 2016. V. 122. P. 32. https://doi.org/10.1134/S1063776115120055
- Kulin G.V., Frank A.I., Rebrova N.V., Zakharov M.A., Gutfreund P., Khaydukov Yu.N., Ortega L., Roschupkin D.V., Goray L.I. // Eur. Phys. J. B. 2024. V. 97. P. 194. https://doi.org/10.1140/epjb/s10051-024-00829-7
- Goray L.I. // Bull. Russ. Acad. Sci. Phys. 2005. V. 69. P. 231.
- Born M., Wolf E. Principles of Optics. Cambridge: Cambridge University Press, 1999. 808 p. https://doi.org.10.1017/9781108769914
- Electromagnetic Theory of Gratings / Ed. Petit R. Berlin: Springer, 1980. 286 p.
- Loewen E.G., Neviere M., Maystre D. // JOSA. 1978. V. 68 Iss. 4. P. 496. https://doi.org/10.1364/JOSA.68.000496
- Neviere M., Flamand J. // Nucl. Instrum. Methods 1980. V. 172. P. 273. https://doi.org/10.1016/0029-554X(80)90646-1
- Goray L.I., Schmidt G. // Gratings: Theory and Numeric Applications / Ed. Popov E. Marseille: Universitaires de Provence, 2014. 578 p. www.fresnel.fr/numerical-grating-book-2
- Goray L.I. // Proc. SPIE. 1994. V. 2278. P. 173. https://doi.org/10.1117/12.180012
- Goray L.I, Jark W., Eichert D. // J. Synchrotron Radiat. 2018. V. 25. P. 1683. https://doi.org/10.1107/S1600577518012419
- Goray L.I. // Proc. Conf. 2024 Days on Diffraction (DD). IEEE Xplore. 2024. P. 65. https://doi.org/10.1109/DD62861.2024.10767957
- https://pegrate.com, Accessed on November 24, 2024.
- https://gsolver.com, Accessed on November 24, 2024.
- Goray L.I. // Waves Random Complex Media. 2010. V. 20. Iss. 4. P. 569. https://doi.org/10.1080/17455030.2010.510857
- Goray L.I. // J. Appl. Phys. 2010. V. 108. P. 033516. https://doi.org/10.1063/1.3467937
- Goray L.I. // J. Synchrotron Radiat. 2021. V. 28. P. 196. https://doi.org/10.1107/S160057752001440X
- Voronov D.L., Cambie R., Feshchenko R.M., Gullikson E.M., Padmore H.A., Vinogradov A.V., Yashchuk V.V.// Proc. SPIE. 2007. V. 6705. P. 67050E. https://doi.org/10.1117/12.732658
- Voronov D.L., Park S., Gullikson E.M., Salmassi F., Padmore H.A. // Opt. Express. 2023. V. 31. Iss. 16. P. 26724. https://doi.org/10.1364/OE.495374
- Revolutionizing Diffraction Gratings. https://inprentus.com/ Accessed on November 24, 2024.
- Voronov D.L., Park S., Gullikson E.M., Salmassi F., Padmore H.A. // Opt. Express. 2021. V. 29. P. 16676. https://doi.org/10.1364/OE.424536
Дополнительные файлы


