Investigation of a Mathematical Model Linking GDP Growth with Changes in National Debt


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The article proposes a mathematical model linking GDP growth with changes in national debt. The model is based on a system of two linear ordinary differential equations. The rate of GDP growth is defined in the model as the difference between aggregate revenues and aggregate expenses, including debt service expenses. Possible types of GDP and national debt dynamics are investigated as a function of parameters. External investments increasing national debt may accelerate economic growth, whereas without new external loans GDP either does not grow or grows slowly. An equation describing the variation of relative external debt has been derived and fully investigated. It is shown that the external debt is never fully repaid, which is consistent with other models. Conditions of stable economic growth are derived, when GDP grows faster than or at the same rate as national debt, whereas the relative debt approaches a constant value. We investigate conditions that preclude a Ponzi game, so that a country cannot use new external debt to build a financial pyramid to repay old debt. The model features are demonstrated in application to statistical data from a number of countries. The model parameters are determined and growth trajectories are calculated for GDP and national debt.

作者简介

V. Dmitriev

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: dmitriev@cs.msu.ru
俄罗斯联邦, Moscow

E. Kurkina

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University

Email: dmitriev@cs.msu.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019