Energy Efficiency Enhancement of Ionic Diode for Neutron Generation with Electronic Conduction Suppression by the Field of a Permanent Magnet


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In order to use neutron generators in applied research, it is important to increase the energy efficiency of neutron generation. For high accelerating voltages, diodes with magnetic insulation are used to suppress electron emission from the cathode in neutron accelerator tubes. A mathematical model describing the dynamics of charged particles in the axial diode with insulation of electrons by the field of a permanent magnet is studied. The model is used to perform a computer experiment that shows a reduction of insulation near the ends of the magnet, which permits up to 40% of the electrons from the cathode to reach the anode of the accelerator tube. An option for making the magnetic insulation more efficient by adding into the magnetic system diaphragms placed in the end zones of a cylindrical cathode is proposed and studied.

Авторлар туралы

E. Vovchenko

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: aeshikanov14@mail.ru
Ресей, Moscow

K. Kozlovskii

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: aeshikanov14@mail.ru
Ресей, Moscow

M. Lisovskii

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: aeshikanov14@mail.ru
Ресей, Moscow

V. Rashchikov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: aeshikanov14@mail.ru
Ресей, Moscow

A. Shikanov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Хат алмасуға жауапты Автор.
Email: aeshikanov14@mail.ru
Ресей, Moscow

V. Shatokhin

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: aeshikanov14@mail.ru
Ресей, Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019