The effect of size of the SiC inclusions in the AlN–SiC composite structure on its electrophysical properties


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

AlN–SiC–Y3Al5O12 composite materials with a high absorption of microwave frequency (27–65 dB/cm) produced by pressureless sintering of mixtures consisting of AlN(2H), Y2O3, and SiC (6H) in 46, 4, 50 wt %, respectively, have been studied. The SiC components of the mixtures were used in sizes of 1, 5, and 50 μm. It has been shown that the resistivity of the developed materials depends essentially on the materials structures: sizes of SiC inclusions, distances between them, and state of the interfaces. It has been found that the increase of the SiC inclusions sizes in the material structure from 3 to 7 μm results in the decrease of the resistivity from 104 to 90 Ω·m, and at the decrease of the SiC inclusions sizes from 3 to 0.5 μm there forms a SiC uninterrupted skeleton, which also decreases the resistivity to 210 Ω·m. Thus, composite materials that contain 50 wt % SiC (inclusions sizes of 3 μm) are the most efficient in producing absorbers of microwave radiation. Interlayers of yttrium aluminum garnet, which are located at the SiC grains boundaries, prevent the forming of AlN(2H)–SiC(6H) solid solutions and thus, make it possible to keep high dielectric characteristics of a composite material based on aluminum nitride and afford a high absorption of a microwave radiation.

About the authors

T. B. Serbenyuk

Bakul Institute for Superhard Materials

Author for correspondence.
Email: serbenuk@ukr.net
Ukraine, vul. Avtozavods’ka 2, Kiev, 04074

T. O. Prikhna

Bakul Institute for Superhard Materials

Email: serbenuk@ukr.net
Ukraine, vul. Avtozavods’ka 2, Kiev, 04074

V. B. Sverdun

Bakul Institute for Superhard Materials

Email: serbenuk@ukr.net
Ukraine, vul. Avtozavods’ka 2, Kiev, 04074

V. I. Chasnyk

Frantsevich Institute for Materials Science Problems

Email: serbenuk@ukr.net
Ukraine, vul. Krzhizhanivs’kogo 3, Kiev, 03680

V. V. Kovylyaev

State enterprise Orion Research Institute

Email: serbenuk@ukr.net
Ukraine, Kiev

J. Dellith

Leibniz Institute of Photonic Technology

Email: serbenuk@ukr.net
Germany, Albert Einstein Strasse 9, Jena, D07745

V. E. Moshchil’

Bakul Institute for Superhard Materials

Email: serbenuk@ukr.net
Ukraine, vul. Avtozavods’ka 2, Kiev, 04074

A. P. Shapovalov

Bakul Institute for Superhard Materials

Email: serbenuk@ukr.net
Ukraine, vul. Avtozavods’ka 2, Kiev, 04074

A. A. Marchenko

Bakul Institute for Superhard Materials

Email: serbenuk@ukr.net
Ukraine, vul. Avtozavods’ka 2, Kiev, 04074

L. O. Polikarpova

Bakul Institute for Superhard Materials

Email: serbenuk@ukr.net
Ukraine, vul. Avtozavods’ka 2, Kiev, 04074

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Allerton Press, Inc.