Capabilities of the Gamma-400 Gamma-ray Telescope for Observation of Electrons and Positrons in the TeV Energy Range


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The space-based GAMMA-400 gamma-ray telescope will measure the fluxes of gamma rays in the energy range from ∼20 MeV to several TeV and cosmic-ray electrons and positrons in the energy range from several GeV to several TeV to investigate the origin of gamma-ray sources, sources and propagation of the Galactic cosmic rays and signatures of dark matter. The instrument consists of an anticoincidence system, a converter-tracker (thickness one radiation length, 1 X0), a time-of-flight system, an imaging calorimeter (2 X0) with tracker, a top shower scintillator detector, an electromagnetic calorimeter from CsI(Tl) crystals (16 X0) with four lateral scintillation detectors and a bottom shower scintillator detector. In this paper, the capability of the GAMMA-400 gamma-ray telescope for electron and positron measurements is analyzed. The bulk of cosmic rays are protons, whereas the contribution of the leptonic component to the total flux is ∼10−3 at high energy. The special methods for Monte Carlo simulations are proposed to distinguish electrons and positrons from proton background in the GAMMA-400 gamma-ray telescope. The contribution to the proton rejection from each detector system of the instrument is studied separately. The use of the combined information from all detectors allows us to reach a proton rejection of up to ∼1 × 104.

Sobre autores

A. Leonov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: aaleonov@mephi.ru
Rússia, Moscow; Moscow

A. Galper

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: aaleonov@mephi.ru
Rússia, Moscow; Moscow

N. Topchiev

P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: aaleonov@mephi.ru
Rússia, Moscow

A. Bakaldin

P.N. Lebedev Physical Institute of the Russian Academy of Sciences; Scientific Research Institute for System Analysis of the Russian Academy of Sciences

Email: aaleonov@mephi.ru
Rússia, Moscow; Moscow

M. Kheimits

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: aaleonov@mephi.ru
Rússia, Moscow

A. Mikhailova

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: aaleonov@mephi.ru
Rússia, Moscow

V. Mikhailov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: aaleonov@mephi.ru
Rússia, Moscow

S. Suchkov

P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: aaleonov@mephi.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019