Mutual Energy of Gaussian Rings


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A problem of mutual potential energy of two elliptical gravitating (or electrostatically charged) Gaussian rings is formulated and solved. The rings are coplanar, and their apsid lines generally have an angle of inclination to each other. The mutual energy of the rings is found in quadratic approximation with respect to ring eccentricities e1 and e2. At the first stage, the potential of the Gaussian ring is represented as a series in terms of eccentricity and determined at the points of another elliptical ring (note theoretical importance of such a result). Linear (with respect to quantities e1 and e2) terms are absent in the expression for the mutual energy of the rings, and the coefficients of the second-order terms (\(e_{1}^{2}\) and \(e_{2}^{2}\)) are equal to each other. Only one coefficient of mixed term (e1e2) is determined by the tilt angle of the apse lines. Such a result can be used to easily determine the moment of force between the rings that is needed for the study of small mutual oscillations of the Gaussian rings.

作者简介

B. Kondratyev

Sternberg Astronomical Institute, Moscow State University; Pulkovo Observatory, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: work@boris-kondratyev.ru
俄罗斯联邦, Moscow, 119234; St. Petersburg, 196140

V. Kornoukhov

Sternberg Astronomical Institute, Moscow State University

Email: work@boris-kondratyev.ru
俄罗斯联邦, Moscow, 119234

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019