On the Maximum Likelihood Estimation of a Covariance Matrix


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For a multivariate normal set-up, it is well known that themaximumlikelihood estimator (MLE) of covariance matrix is neither admissible nor minimax under the Stein loss function. In this paper, we reveal that the MLE based on the Iwasawa parameterization leads to minimaxity with respect to the Stein loss function. Furthermore, a novel class of loss functions is proposed so that the minimum risks of the MLEs are identical in different coordinate systems, Cholesky parameterization and full Iwasawa parameterization. In other words, the MLEs based on these two different parameterizations are characterized by the property of minimaxity, without a Stein paradox. The application of our novel method to the high-dimensional covariance matrix problem is also discussed.

Sobre autores

Ming-Tien Tsai

Inst. of Statist. Sci.

Autor responsável pela correspondência
Email: mttsai@stat.sinica.edu.tw
República da China, Taipei

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2018