Asymptotic Distribution of Least Squares Estimators for Linear Models with Dependent Errors: Regular Designs


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider the usual linear regression model in the case where the error process is assumed strictly stationary.We use a result of Hannan, who proved a Central Limit Theorem for the usual least squares estimator under general conditions on the design and the error process.We show that for a large class of designs, the asymptotic covariance matrix is as simple as in the independent and identically distributed (i.i.d.) case.We then estimate the covariance matrix using an estimator of the spectral density whose consistency is proved under very mild conditions.

Sobre autores

E. Caron

Ecole Centrale Nantes

Autor responsável pela correspondência
Email: emmanuel.caron@ec-nantes.fr
França, Nantes, 6629

S. Dede

Lycée Stanislas

Email: emmanuel.caron@ec-nantes.fr
França, Paris

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2018