Operator-based intensity functions for the nonhomogeneous Poisson process


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

A nonhomogeneous Poisson process (NHPP) plays an important role in a variety of applications as reliability of repairable systems, software reliability and actuarial studies. An NHPP is characterized by its intensity function m(t), which provides information on the time-dependent nature of the reliability of the system. Various intensity functions, which describe different behavior (from reliability decay to reliability growth along with monotonicity, convexity or concavity), have been suggested for NHPP’s for modeling repairable systems. Perhaps one of the most frequently utilized NHPP is the power lawprocess (PLP) in which m(t) is a power function of t. Inthis studywe present a general method for constructing new intensity functions for NHPP’s yielding new classes of NHPP’s. This method utilizes certain operators Ln, n ∈ N0, acting on some suitable functions L0 = f (termed base functions). We call these classesOBIF’s (operator-based intensity functions). These classes are represented in terms of three parameters of which one is an indexing parameter n ∈ N0 and two others are scale and shape parameters. The fact that n ∈ N0 is also a parameter provides a flexibility in the choice of the appropriate statistical model for NHPP’s data. In particular, we consider the exponential operator acting on the PLP intensity function f and realize that Ln’s, n ≥ 2, inherit properties similar to those of L1 (convexity and concavity) and thus are suitable for modelling bathtub data. We also consider a more comprehensive treatment of OBIF classes where both, the operator and base functions, are general. All of the introduced operators are demonstrated with illustrative examples.

Об авторах

S. Bar-Lev

Dept. Statist.

Автор, ответственный за переписку.
Email: barlev@stat.haifa.ac.il
Израиль, Haifa

D. Bshouty

Dept. Math.

Email: barlev@stat.haifa.ac.il
Израиль, Haifa

F. van der Duyn Schouten

Vrije Univ. Amsterdam

Email: barlev@stat.haifa.ac.il
Нидерланды, Amsterdam

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2016

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».