Classes of improved estimators for parameters of a Pareto distribution


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The problem of estimating parameters of a Pareto distribution is investigated under a general scale invariant loss function when the scale parameter is restricted to the interval (0, 1]. We consider the estimation of shape parameter when the scale parameter is unknown. Techniques for improving equivariant estimators developed by Stein, Brewster–Zidek and Kubokawa are applied to derive improved estimators. In particular improved classes of estimators are obtained for the entropy loss and a symmetric loss. Risk functions of various estimators are compared numerically using simulations. It is also shown that the technique of Kubokawa produces improved estimators for estimating the scale parameter when the shape parameter is known.

作者简介

L. Patra

Dept. of Math.

Email: smsh@maths.iitkgp.ernet.in
印度, Kharagpur

S. Kumar

Dept. of Math.

编辑信件的主要联系方式.
Email: smsh@maths.iitkgp.ernet.in
印度, Kharagpur

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2017