Statistical Estimation of Parameters for Binary Conditionally Nonlinear Autoregressive Time Series


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The problem of statistical parameter estimation is considered for binary GLM-based autoregression with the link function of general form and the base functions (regressors) nonlinear w.r.t. the lagged variables. A new consistent asymptotically normal frequencies-based estimator (FBE) is constructed and compared with the classical MLE. It is shown that the FBE has less restrictive sufficient conditions of uniqueness than the MLE (does not need log-concavity of the inverse link) and can be computed recursively under the model extension. The sparse version of the FBE is proposed and the optimal model-dependent weight matrices (parameterizing the FBE) are found for the FBE and for the sparse FBE. The proposed empirical choice of the subset of s-tuples for the sparse FBE is examined by numerical and analytical examples. Computer experiments for comparison of the FBE versus the MLE are performed on simulated and real (genetic) data.

作者简介

Yu. Kharin

Res. Inst. forAppl. Probl. ofMath. and Inform.

编辑信件的主要联系方式.
Email: kharin@bsu.by
白俄罗斯, Minsk

V. Voloshko

Res. Inst. forAppl. Probl. ofMath. and Inform.

Email: kharin@bsu.by
白俄罗斯, Minsk

E. Medved

School of Appl.Math. and Inform.

Email: kharin@bsu.by
白俄罗斯, Minsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2018