On the Skewness Order of van Zwet and Oja
- 作者: Eberl A.1, Klar B.1
-
隶属关系:
- Inst. für Stochastik
- 期: 卷 28, 编号 4 (2019)
- 页面: 262-278
- 栏目: Article
- URL: https://journal-vniispk.ru/1066-5307/article/view/225934
- DOI: https://doi.org/10.3103/S1066530719040021
- ID: 225934
如何引用文章
详细
Van Zwet (1964) [16] introduced the convex transformation order between two distribution functions F and G, defined by F ≤cG if G−1 ∘ F is convex. A distribution which precedes G in this order should be seen as less right-skewed than G. Consequently, if F ≤cG, any reasonable measure of skewness should be smaller for F than for G. This property is the key property when defining any skewness measure.
In the existing literature, the treatment of the convex transformation order is restricted to the class of differentiable distribution functions with positive density on the support of F. It is the aim of this work to analyze this order in more detail. We show that several of the most well known skewness measures satisfy the key property mentioned above with very weak or no assumptions on the underlying distributions. In doing so, we conversely explore what restrictions are imposed on the underlying distributions by the requirement that F precedes G in convex transformation order.
作者简介
A. Eberl
Inst. für Stochastik
编辑信件的主要联系方式.
Email: andreas.eberl@kit.edu
德国, Karlsruhe
B. Klar
Inst. für Stochastik
Email: andreas.eberl@kit.edu
德国, Karlsruhe
补充文件
