Convergence of Eigenfunctions of a Steklov-Type Problem in a Half-Strip with a Small Hole
- Authors: Davletov D.B.1, Davletov O.B.2
-
Affiliations:
- M. Akmulla Bashkir State Pedagogical University
- Ufa State Petroleum Technological University
- Issue: Vol 241, No 5 (2019)
- Pages: 549-555
- Section: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/242916
- DOI: https://doi.org/10.1007/s10958-019-04444-1
- ID: 242916
Cite item
Abstract
We consider a Steklov-type problem for the Laplace operator in a half-strip containing a small hole with the Dirichlet conditions on the lateral boundaries and the boundary of the hole and the Steklov spectral condition on the base of the half-strip. We prove that eigenvalues of this problem vanish as the small parameter (the “diameter” of the hole) tends to zero.
About the authors
D. B. Davletov
M. Akmulla Bashkir State Pedagogical University
Author for correspondence.
Email: davletovdb@mail.ru
Russian Federation, Ufa
O. B. Davletov
Ufa State Petroleum Technological University
Email: davletovdb@mail.ru
Russian Federation, Ufa
Supplementary files
