Boundary triples for integral systems on finite intervals


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Let P, Q, and W be real functions of bounded variation on [0, l], and let W be nondecreasing. The integral system

\( J\overrightarrow{f}(x)-J\overrightarrow{a}=\underset{0}{\overset{x}{\int }}\left(\begin{array}{cc}\uplambda dW- dQ& 0\\ {}0& dP\end{array}\right)\overrightarrow{f}(t),\kern1em J=\left(\begin{array}{cc}0& -1\\ {}1& 0\end{array}\right) \)

on a finite compact interval [0, l] was considered in [6]. The maximal and minimal linear relations Amax and Amin associated with the integral system (0.1) are studied in the Hilbert space L2(W). It is shown that the linear relation Amin is symmetric with deficiency indices n±(Amin) = 2 and Amax = \( {A}_{min}^{\ast }. \) Boundary triples for Amax are constructed, and the the corresponding Weyl functions are calculated.

Авторлар туралы

Dmytro Strelnikov

Vasyl’ Stus Donetsk National University

Хат алмасуға жауапты Автор.
Email: d.strelnikov@donnu.edu.ua
Украина, Vinnitsya

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018