Boundary triples for integral systems on finite intervals
- Авторлар: Strelnikov D.1
-
Мекемелер:
- Vasyl’ Stus Donetsk National University
- Шығарылым: Том 231, № 1 (2018)
- Беттер: 83-100
- Бөлім: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/241087
- DOI: https://doi.org/10.1007/s10958-018-3807-z
- ID: 241087
Дәйексөз келтіру
Аннотация
Let P, Q, and W be real functions of bounded variation on [0, l], and let W be nondecreasing. The integral system
\( J\overrightarrow{f}(x)-J\overrightarrow{a}=\underset{0}{\overset{x}{\int }}\left(\begin{array}{cc}\uplambda dW- dQ& 0\\ {}0& dP\end{array}\right)\overrightarrow{f}(t),\kern1em J=\left(\begin{array}{cc}0& -1\\ {}1& 0\end{array}\right) \)![]()
on a finite compact interval [0, l] was considered in [6]. The maximal and minimal linear relations Amax and Amin associated with the integral system (0.1) are studied in the Hilbert space L2(W). It is shown that the linear relation Amin is symmetric with deficiency indices n±(Amin) = 2 and Amax = \( {A}_{min}^{\ast }. \) Boundary triples for Amax are constructed, and the the corresponding Weyl functions are calculated.
Негізгі сөздер
Авторлар туралы
Dmytro Strelnikov
Vasyl’ Stus Donetsk National University
Хат алмасуға жауапты Автор.
Email: d.strelnikov@donnu.edu.ua
Украина, Vinnitsya
Қосымша файлдар
