On Stably Biserial Algebras and the Auslander–Reiten Conjecture for Special Biserial Algebras
- Авторлар: Antipov M.A.1, Zvonareva A.O.1
-
Мекемелер:
- St. Petersburg State University
- Шығарылым: Том 240, № 4 (2019)
- Беттер: 375-394
- Бөлім: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/242753
- DOI: https://doi.org/10.1007/s10958-019-04358-y
- ID: 242753
Дәйексөз келтіру
Аннотация
According to a result claimed by Pogorza_ly, selfinjective special biserial algebras can be stably equivalent to stably biserial algebras only, and these two classes coincide. By an example of Ariki, Iijima, and Park, the classes of stably biserial and selfinjective special biserial algebras do not coincide. In these notes based on some ideas from the Pogorzały paper, a detailed proof is given for the fact that a selfinjective special biserial algebra can be stably equivalent to a stably biserial algebra only. The structure of symmetric stably biserial algebras is analyzed. It is shown that in characteristic other than 2, the classes of symmetric special biserial (Brauer graph) algebras and symmetric stably biserial algebras coincide. Also a proof of the Auslander–Reiten conjecture for special biserial algebras is given.
Авторлар туралы
M. Antipov
St. Petersburg State University
Хат алмасуға жауапты Автор.
Email: hyperbor@list.ru
Ресей, St. Petersburg
A. Zvonareva
St. Petersburg State University
Email: hyperbor@list.ru
Ресей, St. Petersburg
Қосымша файлдар
