A Sharp Rate of Convergence for the Empirical Spectral Measure of a Random Unitary Matrix


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider the convergence of the empirical spectral measures of random N × N unitary matrices. We give upper and lower bounds showing that the Kolmogorov distance between the spectral measure and uniform measure on the unit circle is of order log N/N, both in expectation and almost surely. This implies, in particular, that the convergence happens more slowly for Kolmogorov distance than for the L1-Kantorovich distance. The proof relies on the determinantal structure of the eigenvalue process.

Sobre autores

E. Meckes

Case Western Reserve University

Autor responsável pela correspondência
Email: elizabeth.meckes@case.edu
Estados Unidos da América, Cleveland, Ohio

M. Meckes

Case Western Reserve University

Email: elizabeth.meckes@case.edu
Estados Unidos da América, Cleveland, Ohio

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019