Exact and Approximate Solutions of the Spectral Problems for the Differential Schrödinger Operator with Polynomial Potential in ℝK, K ≥ 2
- Autores: Makarov V.L.1
-
Afiliações:
- Institute of Mathematics, Ukrainian National Academy of Sciences
- Edição: Volume 240, Nº 3 (2019)
- Páginas: 289-322
- Seção: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/242745
- DOI: https://doi.org/10.1007/s10958-019-04354-2
- ID: 242745
Citar
Resumo
We consider spectral problems for the Schrödinger operator with polynomial potentials in ℝK, K ≥ 2. By using a functional-discrete (FD-)method and the Maple computer algebra system, we determine a series of exact least eigenvalues for the potentials of special form. In the case where the traditional FD-method is divergent (the degree of the polynomial potential exceeds 2 at least in one variable), we propose a modification of the method, which proves to be quite efficient for the class of problems under consideration. The obtained theoretical results are illustrated by numerical examples.
Sobre autores
V. Makarov
Institute of Mathematics, Ukrainian National Academy of Sciences
Autor responsável pela correspondência
Email: makarov@imath.kiev.ua
Ucrânia, Tereshchenkivs’ka Str., 3, Kyiv, 01004
Arquivos suplementares
