Metacyclic 2-Extensions with Cyclic Kernel and Ultrasolvability Questions
- Autores: Kiselev D.D.1
-
Afiliações:
- Russian Foreign Trade Academy
- Edição: Volume 240, Nº 4 (2019)
- Páginas: 447-458
- Seção: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/242760
- DOI: https://doi.org/10.1007/s10958-019-04362-2
- ID: 242760
Citar
Resumo
Necessary and sufficient conditions for a metacyclic extension to be 2-local and ultrasolvable are established. These conditions are used to prove the ultrasolvability of an arbitrary group extension which has a local ultrasolvable associated subextension of the second type. The obtained reductions enables us to derive ultrasolvability results for a wide class of nonsplit 2-extensions with cyclic kernel.
Sobre autores
D. Kiselev
Russian Foreign Trade Academy
Autor responsável pela correspondência
Email: denmexmath@yandex.ru
Rússia, Moscow
Arquivos suplementares
