Smoothness of a Holomorphic Function in a Ball and of its Modulus on the Sphere
- 作者: Shirokov N.A.1
-
隶属关系:
- St. Petersburg State University
- 期: 卷 229, 编号 5 (2018)
- 页面: 568-571
- 栏目: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/240488
- DOI: https://doi.org/10.1007/s10958-018-3699-y
- ID: 240488
如何引用文章
详细
Let a function f be holomorphic in the unit ball ????n, continuous in the closed ball \( {\overline{\mathbb{B}}}^n \) , and let f(z) ≠ 0, z ∈ ????n. Assume that |f| belongs to the α-Hölder class on the unit sphere Sn, 0 < α ≤ 1. The present paper is devoted to the proof of the statement that f belongs to the α/2-Hölder class on \( {\overline{\mathbb{B}}}^n \).
作者简介
N. Shirokov
St. Petersburg State University
编辑信件的主要联系方式.
Email: n.shirokov@spbu.ru
俄罗斯联邦, St. Petersburg
补充文件
