The Riemann–Hilbert Boundary Value Problem for the Moisil–Theodoresco System


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the Riemann–Hilbert boundary value problem for the Moisil–Theodoresco system in a multiply connected domain bounded by a smooth surface in the three–dimensional space. We obtain a criterion for the Fredholm property of the problem and a formula for its index æ = m − s, where s is the number of connected components of the boundary and m is the order of the first de Rham cogomology group of the domain. The study is based on the integral representation of a general solution to the Moisil–Theodoresco system and an explicit description of its kernel and cokernel.

作者简介

A. Soldatov

Institution of Russian Academy of Sciences Dorodnicyn Computing Centre of RAS

编辑信件的主要联系方式.
Email: soldatov48@gmail.com
俄罗斯联邦, 49, Vavilov St., Moscow, 119333

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019