The Riemann–Hilbert Boundary Value Problem for the Moisil–Theodoresco System
- 作者: Soldatov A.P.1
-
隶属关系:
- Institution of Russian Academy of Sciences Dorodnicyn Computing Centre of RAS
- 期: 卷 239, 编号 3 (2019)
- 页面: 381-411
- 栏目: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/242680
- DOI: https://doi.org/10.1007/s10958-019-04312-y
- ID: 242680
如何引用文章
详细
We consider the Riemann–Hilbert boundary value problem for the Moisil–Theodoresco system in a multiply connected domain bounded by a smooth surface in the three–dimensional space. We obtain a criterion for the Fredholm property of the problem and a formula for its index æ = m − s, where s is the number of connected components of the boundary and m is the order of the first de Rham cogomology group of the domain. The study is based on the integral representation of a general solution to the Moisil–Theodoresco system and an explicit description of its kernel and cokernel.
作者简介
A. Soldatov
Institution of Russian Academy of Sciences Dorodnicyn Computing Centre of RAS
编辑信件的主要联系方式.
Email: soldatov48@gmail.com
俄罗斯联邦, 49, Vavilov St., Moscow, 119333
补充文件
