Systems with Parameters, or Efficiently Solving Systems of Polynomial Equations 33 Years Later. II


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Consider a system of polynomial equations with parametric coefficients over an arbitrary ground field. We show that the variety of parameters can be represented as a union of strata. For values of the parameters from each stratum, the solutions of the system are given by algebraic formulas depending only on this stratum. Each stratum is a quasiprojective algebraic variety with degree bounded from above by a subexponential function in the size of the input data. The number of strata is also subexponential in the size of the input data. Thus, here we avoid double exponential upper bounds on the degrees and solve a long-standing problem

作者简介

A. Chistov

St. Petersburg Department of Steklov Institute of Mathematics

编辑信件的主要联系方式.
Email: alch@pdmi.ras.ru
俄罗斯联邦, St. Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019